NotesFAQContact Us
Collection
Advanced
Search Tips
Location
Finland1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 19 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Elizabeth Stippell; Alexey V. Akimov; Oleg V. Prezhdo – Journal of Chemical Education, 2023
We report an educational tool for the upper level undergraduate quantum chemistry or quantum physics course that uses a symbolic approach via the PySyComp Python library. The tool covers both time-independent and time-dependent quantum chemistry, with the latter rarely considered in the foundations course due to topic complexity. We use quantized…
Descriptors: Undergraduate Students, College Science, Quantum Mechanics, Chemistry
Ryan Tapping – ProQuest LLC, 2021
In this dissertation I will present my work in both the fields of spintronics and physics education research. In the first section, I present a method to account for spin pumping in spin torque ferromagnetic resonance (ST-FMR) measurements. A spin current can be generated via the spin Hall effect (SHE), which is typically transverse to the charge…
Descriptors: Magnets, Electronics, Physics, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Pendrill, Ann-Marie; Eriksson, Moa; Eriksson, Urban; Svensson, Kim; Ouattara, Lassana – Physics Education, 2019
Describing the motion in a vertical roller coaster loop requires a good understanding of Newton's laws, vectors and energy transformation. This paper describes how first-year students try to make sense of force and acceleration in this example of non-uniform circular motion, which was part of a written exam. In addition to an analysis of the exam…
Descriptors: Motion, Science Instruction, College Freshmen, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Faella, Orazio; De Luca, Roberto – Physics Education, 2015
A student realizes that a point particle that is able to rise at a given point P[subscript 0] at height H when launched vertically from the origin O of a Cartesian plane at a fixed initial speed V[subscript 0] cannot reach, by means of a direct shot from a small spring cannon, a point P positioned at the same height H and distance d from…
Descriptors: Science Instruction, Physics, Scientific Concepts, Motion
McConnell, Tom J.; Parker, Joyce; Eberhardt, Janet – NSTA Press, 2018
"Problem-Based Learning in the Physical Science Classroom, K-12" will help your students truly understand concepts such as motion, energy, and magnetism in true-to-life contexts. The book offers a comprehensive description of why, how, and when to implement problem-based learning (PBL) in your curriculum. Its 14 developmentally…
Descriptors: Problem Based Learning, Physical Sciences, Elementary Secondary Education, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Gabovich, A. M.; Voitenko, A. I. – European Journal of Physics, 2012
The problem of charge motion governed by image force attraction near a plane metal surface is considered and solved self-consistently. The temporal dispersion of metal dielectric permittivity makes the image forces dynamic and, hence, finite, contrary to the results of the conventional approach. Therefore, the maximal attainable velocity turns out…
Descriptors: Science Instruction, Physics, Scientific Principles, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Hong, Seok-In – European Journal of Physics, 2009
The exact expressions for the drain time and the height, velocity and acceleration of the free surface are found for the draining reservoir problem of the incompressible and non-viscous liquid. Contrary to the conventional approximate results, they correctly describe the initial time dependence of the liquid velocity and acceleration. Torricelli's…
Descriptors: Motion, Energy, Mechanics (Physics), Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Basu, B.; Roy, B. – European Journal of Physics, 2009
The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.
Descriptors: Interaction, Science Instruction, Quantum Mechanics, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Dunning, R. B. – Physics Education, 2009
The bicycle provides a context-rich problem accessible to students in a first-year physics course, encircling several core physics principles such as conservation of total energy and angular momentum, dissipative forces, and vectors. In this article, I develop a simple numerical model that can be used by any first-year physics student to…
Descriptors: Physics, Scientific Concepts, Science Instruction, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Jewett, John W., Jr. – Physics Teacher, 2008
Energy is a critical concept in physics problem-solving, but is often a major source of confusion for students if the presentation is not carefully crafted by the instructor or the textbook. A common approach to problems involving deformable or rotating systems that has been discussed in the literature is to employ the work-kinetic energy theorem…
Descriptors: Kinetics, Energy, Problem Solving, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Boozer, A. D. – European Journal of Physics, 2007
A model is presented that describes a scalar field interacting with a point particle in (1+1) dimensions. The model exhibits many of the same phenomena that appear in classical electrodynamics, such as radiation and radiation damping, yet has a much simpler mathematical structure. By studying these phenomena in a highly simplified model, the…
Descriptors: Models, Radiation, Mathematics Education, Problem Solving
Peer reviewed Peer reviewed
Brown, Helen; Meyers, Bernice; Schmidt, William – Hoosier Science Teacher, 1999
Marbles were successfully used to help primary students develop concepts of motion. Marble-unit activities began with shaking and rattling inference bags and predicting by listening just how many marbles were in each bag. Students made qualitative and quantitative observations of the marbles, manipulated marbles with a partner, and observed…
Descriptors: Concept Teaching, Elementary Education, Energy, Motion
Peer reviewed Peer reviewed
Stowe, Lawrence G. – Physics Teacher, 1995
Describes the graphing calculator as a new graphical approach to standard physics problems. Presents a collision problem to illustrate its use. (JRH)
Descriptors: Energy, Graphing Calculators, Kinetics, Motion
Goodstein, Madeline Prager; Sitzman, Barbara Pressey – 1992
This document presents activities in the physical sciences. Activities are grouped in the following chapters: (1) "Science and Measurement"; (2) "Measurement Units"; (3) "Introduction to Chemistry"; (4) "The Periodic Table"; (5) "What is Inside an Atom?"; (6) "Bonding"; (7) "Formulas and Equations"; (8) "The Bursting Atom"; (9) "Relationships…
Descriptors: Acceleration (Physics), Chemistry, Energy, Force
Peer reviewed Peer reviewed
Risley, John S. – Physics Teacher, 1984
Evaluates two computer programs for Apple II which provide drill and practice in Newton's laws of motion and in work-energy relationships. Student performance is recorded on the diskette allowing the teacher to view the number of questions completed and percentage correct. (JM)
Descriptors: College Science, Computer Programs, Energy, Force
Previous Page | Next Page ยป
Pages: 1  |  2