NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 36 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yiting Wang; Xiumei Feng; Yuchen Jiang; Li Xie; Min Xia; Lei Bao – Physical Review Physics Education Research, 2025
Understanding particle motion in force fields (PMFF), which encompasses the nature of forces and the relationship between force and motion, is fundamental to mastering mechanics and electromagnetism. Effectively solving PMFF-related problems requires advanced reasoning skills and the ability to apply knowledge across diverse contexts. Despite…
Descriptors: Physics, Difficulty Level, Science Instruction, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Christoph Hoyer; Raimund Girwidz – Physical Review Physics Education Research, 2024
Vector fields are a highly abstract physical concept that is often taught using visualizations. Although vector representations are particularly suitable for visualizing quantitative data, they are often confusing, especially when describing real fields such as magnetic and electric fields, as the vector arrows can overlap. The present study…
Descriptors: Science Instruction, Teaching Methods, Physics, Scientific Concepts
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sakyiwaa Boateng; Sizwe J. C. Masuku – Journal of Baltic Science Education, 2025
Electricity and magnetism are fundamental areas of physics and are integral to science curricula at various educational levels. However, this area has been reported to contain several concepts that students find challenging, leading to perspectives that diverge from scientifically accepted views. This study examines the errors made by physics…
Descriptors: Physics, Science Teachers, Preservice Teachers, Teacher Education Programs
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Jinhui – Physics Teacher, 2020
The distant magnetic field of a magnetic dipole is usually derived via the magnetic vector potential and substantial vector calculus. This paper presents an alternate proof that is less mathematically intensive, and that ties together various problem-solving tricks (the principle of virtual work, observation that only instantaneous quantities…
Descriptors: Physics, Magnets, Calculus, Mathematical Logic
Peer reviewed Peer reviewed
Direct linkDirect link
Wilcox, Bethany R.; Corsiglia, Giaco – Physical Review Physics Education Research, 2019
We investigate upper-division student difficulties with direct integration in multiple contexts involving the calculation of a potential from a continuous distribution (e.g., mass, charge, or current). Integration is a tool that has been historically studied at several different points in the curriculum including introductory and upper-division…
Descriptors: Physics, Science Instruction, Mathematics, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Campos, Esmeralda; Hernandez, Eder; Barniol, Pablo; Zavala, Genaro – Physical Review Physics Education Research, 2023
Identifying students' difficulties in understanding Gauss's and Ampere's laws is important for developing educational strategies that promote an expertlike understanding of the field concept and Maxwell's equations of electromagnetic phenomena. This study aims to analyze and compare students' understanding of symmetry when applying Gauss's and…
Descriptors: Scientific Principles, Teaching Methods, Scientific Concepts, Concept Formation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kocakulah, Aysel – Participatory Educational Research, 2022
The aim of this study is to develop and apply a rubric to evaluate the solutions proposed for questions about electromagnetic induction belonging to university second year pre-service teachers. In this study which has pretest-posttest quasi-experimental design with control group, teaching of the topic of electromagnetic induction was applied to…
Descriptors: Scoring Rubrics, Student Evaluation, Undergraduate Students, Problem Solving
Ryan Tapping – ProQuest LLC, 2021
In this dissertation I will present my work in both the fields of spintronics and physics education research. In the first section, I present a method to account for spin pumping in spin torque ferromagnetic resonance (ST-FMR) measurements. A spin current can be generated via the spin Hall effect (SHE), which is typically transverse to the charge…
Descriptors: Magnets, Electronics, Physics, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Jiun-Wei Guo; Hsiao-Ching She; Meng-Jun Chen; Pei-Yi Tsai – International Journal of Computer-Supported Collaborative Learning, 2023
The individual problem-solving (IPS) and collaborative problem-solving (CPS) have received a lot of attention, yet little research has been conducted to investigate whether CPS and IPS are equally effective in improving students' understanding of physics concepts, problem-solving abilities, and minimizing achievement gaps. Therefore, the present…
Descriptors: Cooperative Learning, Problem Solving, Middle School Students, Grade 8
Peer reviewed Peer reviewed
Direct linkDirect link
Hernandez, Eder; Campos, Esmeralda; Barniol, Pablo; Zavala, Genaro – Physical Review Physics Education Research, 2022
Studying students' problem-solving abilities in physics education research has consistently shown that novices focus on a problem's surface features rather than its physical principles. Previous research has observed that some electricity and magnetism students confuse electricity and magnetism concepts, often presented in parallel problems (or…
Descriptors: Problem Solving, Scientific Concepts, Concept Formation, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Maries, Alexandru; Brundage, Mary Jane; Singh, Chandralekha – Physical Review Physics Education Research, 2022
The Conceptual Survey of Electricity and Magnetism (CSEM) is a multiple-choice survey that contains a variety of electricity and magnetism concepts from Coulomb's law to Faraday's law at the level of introductory physics used to help inform instructors of student mastery of those concepts. Prior studies suggest that many concepts on the survey are…
Descriptors: Physics, Energy, Graduate Students, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Heckler, Andrew F.; Scaife, Thomas M. – Physical Review Special Topics - Physics Education Research, 2015
A small number of studies have investigated student understanding of vector addition and subtraction in generic or introductory physics contexts, but in almost all cases the questions posed were in the vector arrow representation. In a series of experiments involving over 1000 students and several semesters, we investigated student understanding…
Descriptors: Science Instruction, Physics, Scientific Concepts, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Pawlak, Alanna; Irving, Paul W.; Caballero, Marcos D. – Physical Review Physics Education Research, 2018
Group work is becoming increasingly common in introductory physics classrooms. Understanding how students engage in these group learning environments is important for designing and facilitating productive learning opportunities for students. We conducted a study in which we collected video of groups of students working on conceptual electricity…
Descriptors: Cooperative Learning, Video Technology, Scientific Concepts, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Almudi, Jose Manuel; Ceberio, Mikel – International Journal of Science and Mathematics Education, 2015
This study explored the quality of arguments used by first-year engineering university students enrolled in a traditional physics course dealing with electromagnetic induction and related problem solving where they had to assess whether the electromagnetic induction phenomenon would occur. Their conclusions were analyzed for the relevance of the…
Descriptors: Persuasive Discourse, Engineering Education, College Freshmen, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Prentice, A.; Fatuzzo, M.; Toepker, T. – Physics Teacher, 2015
By describing the motion of a charged particle in the well-known nonuniform field of a current-carrying long straight wire, a variety of teaching/learning opportunities are described: 1) Brief review of a standard problem; 2) Vector analysis; 3) Dimensionless variables; 4) Coupled differential equations; 5) Numerical solutions.
Descriptors: Magnets, Motion, Physics, Learning Activities
Previous Page | Next Page »
Pages: 1  |  2  |  3