NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
Group Embedded Figures Test1
What Works Clearinghouse Rating
Showing 1 to 15 of 143 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Forringer, Edward – Physics Teacher, 2021
When authoring physics problems, professors may develop an intuition for how much information they need to provide such that the problem has a unique answer and is not over constrained. It is an open question as to whether using intuition leads to a sufficiently broad range of problems. In this paper we discuss a systematic way of authoring…
Descriptors: Motion, Physics, Science Instruction, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Giulia Polverini; Bor Gregorcic – Physical Review Physics Education Research, 2024
The well-known artificial intelligence-based chatbot ChatGPT-4 has become able to process image data as input in October 2023. We investigated its performance on the test of understanding graphs in kinematics to inform the physics education community of the current potential of using ChatGPT in the education process, particularly on tasks that…
Descriptors: Computer Software, Artificial Intelligence, Visual Impairments, Graphs
Peer reviewed Peer reviewed
Direct linkDirect link
Chong, Zhiwei; Wu, Zhuoyi; Wei, Yajun – Physics Education, 2022
The motion equations of a body under gravity and resistance linearly dependent on speed are usually analysed by solving differential equations. In this paper we report a derivation not explicitly involving differential equations but instead based on some elementary mathematical operations. The derivation uses only knowledge covered in a typical…
Descriptors: Motion, Equations (Mathematics), Physics, Science Instruction
Daniel A. Martens Yaverbaum – ProQuest LLC, 2024
This study investigated evidence of how students' mental models of fundamental kinematic relations evolved (i.e., developed cognitively over time) as observed during an introductory course in calculus-based classical mechanics. The core of the curriculum is based on a claim known as Galileo's principle of relativity. The course material comprised…
Descriptors: Schemata (Cognition), Motion, Physics, Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Wong, Kin Son; Wong, Hang – Physics Teacher, 2022
The law of conservation of momentum is a fundamental law of nature. It states that the momentum of an isolated system is conserved. In high school or introductory-level physics courses, for simplicity, teachers and textbooks always use collisions in one dimension as the examples to introduce the concept of conservation of momentum. To solve simple…
Descriptors: Scientific Principles, Kinetics, Motion, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Elizabeth Stippell; Alexey V. Akimov; Oleg V. Prezhdo – Journal of Chemical Education, 2023
We report an educational tool for the upper level undergraduate quantum chemistry or quantum physics course that uses a symbolic approach via the PySyComp Python library. The tool covers both time-independent and time-dependent quantum chemistry, with the latter rarely considered in the foundations course due to topic complexity. We use quantized…
Descriptors: Undergraduate Students, College Science, Quantum Mechanics, Chemistry
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cashata, Zerihun Anibo; Seyoum, Desta Gebeyehu; Gashaw, Fikadu Eshetu – International Journal of Research in Education and Science, 2023
Jigsaw-IV Problem-solving method is innovative active learning instruction used to improve college student's learning. The main purpose of the study was to investigate the effect of Jigsaw-IV problem-solving instruction on preservice physics teachers' (PSPT) procedural knowledge in college of teacher education in the Southern nation nationality…
Descriptors: Foreign Countries, Cooperative Learning, Problem Solving, Active Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Eryilmaz-Toksoy, Seyhan – Journal of Theoretical Educational Science, 2022
In this research, it was aimed to analyze the problem solving strategies used during solving problems related to constant speed and constant acceleration motion, which are often used in graphs, according to the presentation of the problem (text and graph). The research was carried out with 119 students studying in the 11th grade. In the research…
Descriptors: Motion, Problem Solving, Scientific Concepts, Secondary School Science
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Anna Koumara; Michael Bakaloglou; Hariton M. Polatoglou – World Journal of Education, 2024
Eleven high school students participated in a one-week STEM summer camp focused on designing and building parachutes to deliver fragile objects safely. Using the Engineering Design Process (EDP) as a framework, students explored how canopy size affects performance. They applied physics concepts such as terminal velocity, forces, and acceleration,…
Descriptors: Foreign Countries, High School Students, Summer Science Programs, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Rovšek, Barbara; Žigon, Sašo – Physics Teacher, 2021
This paper addresses a popular topic in science teaching and competitions for primary and secondary school students. Experiments with colliding coins are relatively easy to perform and therefore popular in science lessons. We used the idea in the science competition we organized for pupils aged 6 to 13 years.7 The science competition is based on a…
Descriptors: Physics, Science Instruction, Teaching Methods, Elementary School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Atkin, Keith – Physics Education, 2019
This paper shows how a freely downloadable and powerful software package, "SMath Studio," can be used to model physical systems in physics teaching. The software can form the basis of lecture demonstrations by teachers or can be used individually by students working in an educational environment or on their own home computers.
Descriptors: Physics, Science Instruction, Problem Solving, Scientific Concepts
Ryan Tapping – ProQuest LLC, 2021
In this dissertation I will present my work in both the fields of spintronics and physics education research. In the first section, I present a method to account for spin pumping in spin torque ferromagnetic resonance (ST-FMR) measurements. A spin current can be generated via the spin Hall effect (SHE), which is typically transverse to the charge…
Descriptors: Magnets, Electronics, Physics, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Atkin, Keith – Physics Education, 2020
In this paper it is demonstrated how the free, and easily downloadable, software package called SMath Studio can be used to set up a model of alpha-particle scattering. The basic physics of the motion of an alpha-particle in the nuclear coulomb field is used to produce a simple stepwise computer algorithm which, in conjunction with a novel set of…
Descriptors: Computer Software, Physics, Science Instruction, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Redish, Edward F. – Physics Teacher, 2021
An important step in learning to use math in science is learning to see symbolic equations not just as calculational tools, but as ways of expressing fundamental relationships among physical quantities, of coding conceptual information, and of organizing physics knowledge structures. In this paper, I propose "anchor equations" as a…
Descriptors: Physics, Science Instruction, Teaching Methods, Equations (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Pendrill, Ann-Marie – Physics Education, 2020
Students often use incoherent strategies in their problem solving involving force and motion, as revealed, e.g. when they are asked to draw force diagrams for amusement rides involving circular motion, whether in horizontal or vertical planes. Depending on the questions asked, assignments involving circular motion can reveal different types of…
Descriptors: Science Instruction, Physics, Motion, Scientific Concepts
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10