Publication Date
| In 2026 | 0 |
| Since 2025 | 19 |
| Since 2022 (last 5 years) | 93 |
| Since 2017 (last 10 years) | 291 |
| Since 2007 (last 20 years) | 575 |
Descriptor
| Problem Solving | 823 |
| Science Instruction | 823 |
| Physics | 766 |
| Teaching Methods | 311 |
| Scientific Concepts | 245 |
| College Science | 228 |
| Foreign Countries | 194 |
| Science Education | 164 |
| Higher Education | 135 |
| Mechanics (Physics) | 127 |
| Secondary School Science | 126 |
| More ▼ | |
Source
Author
Publication Type
Education Level
| Higher Education | 295 |
| Postsecondary Education | 195 |
| Secondary Education | 146 |
| High Schools | 105 |
| Elementary Education | 22 |
| Middle Schools | 21 |
| Grade 10 | 18 |
| Junior High Schools | 17 |
| Grade 11 | 11 |
| Grade 12 | 9 |
| Grade 8 | 9 |
| More ▼ | |
Audience
| Teachers | 105 |
| Practitioners | 89 |
| Researchers | 31 |
| Students | 8 |
| Administrators | 1 |
Location
| Turkey | 22 |
| Indonesia | 21 |
| China | 11 |
| Israel | 9 |
| Colorado | 8 |
| Australia | 7 |
| Croatia | 6 |
| Germany | 6 |
| Sweden | 6 |
| Portugal | 5 |
| South Africa | 5 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Michael E. Robbins; Nathan D. Davis; Eric W. Burkholder – Physical Review Physics Education Research, 2025
There is currently little physics education literature examining thinking and learning in graduate education and even less literature characterizing problem solving among physics graduate students despite this being an essential professional skill for physicists. Given reports of discrepancies between physics problem solving in the undergraduate…
Descriptors: Decision Making, Graduate Students, Physics, Science Instruction
Ebba Koerfer; Bor Gregorcic – Physical Review Physics Education Research, 2024
Statistical mechanics has received limited attention in physics education research and remains a relatively underrepresented topic even in research on upper-division physics courses. The purpose of this study was to explore potential challenges that physics students encounter when they solve statistical mechanics problems in groups. Adopting a…
Descriptors: Physics, Science Instruction, Mechanics (Physics), Barriers
Elevator Speech: Students' Discussions of Forces and Acceleration by Means of a Scale in an Elevator
Johansen, Astrid; Bungum, Berit – LUMAT: International Journal on Math, Science and Technology Education, 2022
Students' challenges in learning mechanics are well documented from test situations, and group discussions are considered a fruitful way to meet these challenges. In this paper, we present a study from an authentic teaching setting where upper secondary students in groups solve the task of calculating the acceleration of an elevator by means of a…
Descriptors: Physics, Secondary School Students, Secondary School Science, Group Activities
Yiting Wang; Xiumei Feng; Yuchen Jiang; Li Xie; Min Xia; Lei Bao – Physical Review Physics Education Research, 2025
Understanding particle motion in force fields (PMFF), which encompasses the nature of forces and the relationship between force and motion, is fundamental to mastering mechanics and electromagnetism. Effectively solving PMFF-related problems requires advanced reasoning skills and the ability to apply knowledge across diverse contexts. Despite…
Descriptors: Physics, Difficulty Level, Science Instruction, Scientific Concepts
Burkholder, Eric; Salehi, Shima; Sackeyfio, Sarah; Mohamed-Hinds, Nicel; Wieman, Carl – Physical Review Physics Education Research, 2022
Introductory calculus-based mechanics ("Physics 1") is an important gateway course for students desiring to pursue a science, technology, engineering, and mathematics (STEM) career. A major challenge with this course is the large spread in the students' incoming physics preparation. This level of preparation is strongly predictive of a…
Descriptors: Science Instruction, Mechanics (Physics), STEM Education, Calculus
Abolaji R. Akinyemi; Michael E. Loverude; John R. Thompson – Physical Review Physics Education Research, 2025
One expected outcome of physics instruction is that students develop quantitative reasoning skills, including strategies for evaluating solutions to problems. Examples of well-known "canonical" evaluation strategies include special case analysis, unit analysis, and checking for reasonable numbers. We report on responses from three tasks…
Descriptors: Physics, Science Instruction, Problem Solving, Evaluation
Ärlebäck, Jonas Bergman; Albarracín, Lluís – Physics Teacher, 2022
Enrico Fermi is remembered for his many contributions to theoretical and experimental physics, but from an educational point of view he also popularized the use of the kind of questions we now call "Fermi problems" (or "Fermi questions"). Fermi problems (FPs) are back-of-envelope problems that arose from the need to make order…
Descriptors: Physics, Science Instruction, Problem Solving, Computation
Tong, Dazhen; Liu, Jia; Sun, Yechao; Liu, Qiaoyi; Zhang, Xiangqun; Pan, Sudong; Bao, Lei – Physical Review Physics Education Research, 2023
Work and mechanical energy is a fundamental topic in introductory physics. Studies in existing literature have shown that students have difficulties in understanding work and mechanical energy, particularly the topic of work-energy theorem. To study students' knowledge integration in learning work and mechanical energy, a conceptual framework…
Descriptors: Student Evaluation, Physics, Science Instruction, Scientific Concepts
de Sá Neto, Olimpio Pereira; Aquino Sousa, Herbert José; da Silva, Rafael Ferreira – Physics Teacher, 2022
We will present a problem-solving method for the dynamics of a projectile that has two perpendicular acceleration vectors through rotation of the axes. This methodology of reparameterizing the two-dimensional system simplifies the speed optimization calculus.
Descriptors: Problem Solving, Science Instruction, Teaching Methods, Physics
Tong Tong; Feipeng Pi; Siyan Zheng; Yi Zhong; Xiaochun Lin; Yajun Wei – Research in Science Education, 2025
Students' success in physics problem-solving extends beyond conceptual knowledge of physics, relying significantly on their mathematics skills. Understanding the specific contributions of different mathematics skills to physics problem-solving can offer valuable insights for enhancing physics education. Yet such studies are rare, particularly at…
Descriptors: Mathematics Skills, Physics, Problem Solving, Science Instruction
Theophile Musengimana; Lakhan Lal Yadav; Jean Uwamahoro; Gabriel Nizeyimana – Discover Education, 2025
Classroom observation is a critical tool for evaluating instructional strategies and their impact on student learning outcomes. This study investigates how implementing systematic problem-solving strategies affects teaching practices, classroom dynamics, and student engagement in Rwandan secondary school physics classrooms. A quasi-experimental…
Descriptors: Physics, Science Instruction, Secondary School Students, Problem Solving
Lagos, Miguel; Elgueta, Milton; Molina, Mario I. – Physics Teacher, 2022
In this work, we study several closely related problems involving chains, conveyor belts, and rockets, which are described and solved without the application of infinitesimal calculus, or even the concept of mathematical limit. On one hand, the novelty lies not in the problems themselves, but in the method used for their solution, which brings…
Descriptors: Science Instruction, Physics, Problem Solving, Energy Conservation
Erol, Mustafa; Oflaz, Özlem – Electronic Journal for Research in Science & Mathematics Education, 2020
In contrast to the determinist and non-discrete structure of classical physical concepts, the probabilistic and discrete/quantised structure of quantum physics embeds certain difficulties in deeper understanding and teaching activities. In this study, in order to understand and to teach the concept of quantization more effectively, a clear analogy…
Descriptors: Teaching Methods, Science Instruction, Quantum Mechanics, Mechanics (Physics)
Lisa Giachini; Isabelle Cabot – Journal of Education and Learning, 2025
This study examines the effects of the pedagogical use of context-rich problems on motivation and learning, as compared to traditional problems, in mechanical physics courses at the college level. The results indicate that the treatment has appreciable outcomes on conceptual learning gain, on the perception of task value and on a perceived sense…
Descriptors: Mechanics (Physics), Science Instruction, Student Motivation, Problem Solving
Elina Palmgren; Tapio Rasa – Science & Education, 2024
Modelling roles of mathematics in physics has proved to be a difficult task, with previous models of the interplay between the two disciplines mainly focusing on mathematical modelling and problem solving. However, to convey a realistic view of physics as a field of science to our students, we need to do more than train them to become fluent in…
Descriptors: Physics, Mathematical Models, Science Instruction, Problem Solving

Peer reviewed
Direct link
