NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ralph, Vanessa Rosa; States, Nicole E.; Corrales, Adriana; Nguyen, Yvonne; Atkinson, Molly B. – Chemistry Education Research and Practice, 2022
Emphasizing stoichiometry appears to be a norm of introductory chemistry courses. In this longitudinal and mixed-methods study, we examined how the emphasis on stoichiometry in assessments of introductory chemistry impacted educational equity and student learning. Using quantitative methods, we identified mole and stoichiometric conversions as two…
Descriptors: Chemistry, Science Instruction, Equal Education, Introductory Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Reinhard, Aaron; Felleson, Alex; Turner, Paula C.; Green, Maxwell – Physical Review Physics Education Research, 2022
We studied the impact of metacognitive reflections on recently-completed work as a way to improve the retention of newly learned problem-solving techniques. Students video recorded themselves talking through problems immediately after finishing them, completed ongoing problem-solving strategy maps or problem-sorting exercises, and filled out…
Descriptors: Metacognition, Problem Solving, Retention (Psychology), Video Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Frey, Regina F.; McDaniel, Mark A.; Bunce, Diane M.; Cahill, Michael J.; Perry, Martin D. – CBE - Life Sciences Education, 2020
We previously reported that students' concept-building approaches, identified a priori using a cognitive psychology laboratory task, extend to learning complex science, technology, engineering, and mathematics topics. This prior study examined student performance in both general and organic chemistry at a select research institution, after…
Descriptors: Concept Formation, Problem Solving, Active Learning, Inquiry
Peer reviewed Peer reviewed
Direct linkDirect link
Burkholder, E. W.; Miles, J. K.; Layden, T. J.; Wang, K. D.; Fritz, A. V.; Wieman, C. E. – Physical Review Physics Education Research, 2020
We introduce a template to (i) scaffold the problem solving process for students in the physics 1 course, and (ii) serve as a generic rubric for measuring how expertlike students are in their problem solving. This template is based on empirical studies of the problem solving practices of expert scientists and engineers, unlike most existing…
Descriptors: Physics, Science Instruction, Teaching Methods, Introductory Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Teichert, Melonie A.; Schroeder, Maria J.; Lin, Shirley; Dillner, Debra K.; Komperda, Regis; Bunce, Diane M. – Journal of Chemical Education, 2020
On the basis of the results of two prior studies at the US Naval Academy (USNA), which described the choice of study resources and the self-reported learning approaches of students of differing achievement levels, the current investigation examines how students of differing achievement levels in general chemistry actually solve multiple-choice…
Descriptors: Problem Solving, Chemistry, Science Instruction, Science Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Gette, Cody R.; Kryjevskaia, Mila; Stetzer, MacKenzie R.; Heron, Paula R. L. – Physical Review Physics Education Research, 2018
A growing body of scholarly work indicates that student performance on physics problems stems from many factors, including relevant conceptual understanding. However, in contexts in which significant conceptual difficulties have been documented via research, it can be difficult to pinpoint and isolate such factors because students' written and…
Descriptors: Case Studies, Science Instruction, Scientific Principles, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
McDonnell, Lisa; Mullally, Martha – Journal of College Science Teaching, 2016
An essential component skill of monitoring and reflection during problem solving is work checking, a process used by experts while solving problems to determine if their solution is achieving the goal. The results of work checking may reveal errors or inconsistencies, indicating a need for iteration. Using think-aloud interviews, the authors…
Descriptors: College Science, Protocol Analysis, Undergraduate Students, Genetics
Peer reviewed Peer reviewed
Direct linkDirect link
Wilcox, Bethany R.; Pollock, Steven J. – Physical Review Special Topics - Physics Education Research, 2015
Separation of variables can be a powerful technique for solving many of the partial differential equations that arise in physics contexts. Upper-division physics students encounter this technique in multiple topical areas including electrostatics and quantum mechanics. To better understand the difficulties students encounter when utilizing the…
Descriptors: Physics, Advanced Students, Problem Solving, Calculus
Peer reviewed Peer reviewed
Direct linkDirect link
Wilcox, Bethany R.; Pollock, Steven J. – Physical Review Special Topics - Physics Education Research, 2015
The Dirac delta function is a standard mathematical tool that appears repeatedly in the undergraduate physics curriculum in multiple topical areas including electrostatics, and quantum mechanics. While Dirac delta functions are often introduced in order to simplify a problem mathematically, students still struggle to manipulate and interpret them.…
Descriptors: Science Instruction, Undergraduate Study, College Science, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Flynn, Alison B. – Chemistry Education Research and Practice, 2014
Organic chemistry has the long-standing reputation as a challenging course, and organic synthesis is an aspect of organic chemistry that requires students to make the most links between concepts and requires the highest order of thinking. One-on-one interviews were conducted with students from a second undergraduate organic chemistry course in…
Descriptors: Undergraduate Students, Organic Chemistry, Problem Solving, Protocol Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gulacar, Ozcan; Bowman, Charles R.; Feakes, Debra A. – Science Education International, 2013
The problem-solving strategies of students enrolled in general chemistry courses have been the subject of numerous research investigations. In most cases, the investigators were interested in the specific areas or concepts that posed the greatest difficulty to a student's success in achieving the correct answer. However, the investigation reported…
Descriptors: Problem Solving, College Students, Chemistry, Science Instruction
Peer reviewed Peer reviewed
Camacho, Moises; Good, Ron – Journal of Research in Science Teaching, 1989
Describes the problem-solving behaviors of experts and novices engaged in solving seven chemical equilibrium problems. Lists 27 behavioral tendencies of successful and unsuccessful problem solvers. Discusses several implications for a problem solving theory, think-aloud techniques, adequacy of the chemistry domain, and chemistry instruction.…
Descriptors: Chemistry, College Science, Problem Sets, Problem Solving
Yepes-Baraya, Mario – 1996
The cognitive processes students use in doing the 1996 science assessment of the National Assessment of Educational Progress (NAEP) were studied using two booklets from the 1993 NAEP science field test. Blocks of items from these booklets, a hands-on task block and either a conceptual/problem solving block or a theme block, were administered to 16…
Descriptors: Cognitive Processes, Construct Validity, Difficulty Level, Grade 8
Baxter, Gail P.; And Others – 1993
Analyses of the cognitive activity displayed by students on existing innovative assessments in science were conducted. The project has worked with pilot alternative assessment programs in Connecticut and California to document the match or mismatch between the skills and processes that the assessment is designed to tap and those actually elicited.…
Descriptors: Alternative Assessment, Cognitive Processes, Cognitive Psychology, Cognitive Structures