Publication Date
| In 2026 | 0 |
| Since 2025 | 43 |
| Since 2022 (last 5 years) | 188 |
| Since 2017 (last 10 years) | 533 |
| Since 2007 (last 20 years) | 985 |
Descriptor
| Problem Solving | 1705 |
| Physics | 1582 |
| Science Instruction | 825 |
| Science Education | 543 |
| Teaching Methods | 516 |
| College Science | 429 |
| Foreign Countries | 397 |
| Scientific Concepts | 395 |
| Higher Education | 337 |
| Mechanics (Physics) | 254 |
| Secondary School Science | 239 |
| More ▼ | |
Source
Author
| Singh, Chandralekha | 29 |
| Yerushalmi, Edit | 12 |
| Clement, John | 11 |
| Brekke, Stewart E. | 10 |
| Rebello, N. Sanjay | 10 |
| Mason, Andrew | 9 |
| VanLehn, Kurt | 9 |
| Bao, Lei | 8 |
| Ding, Lin | 8 |
| Henderson, Charles | 8 |
| Finkelstein, Noah D. | 7 |
| More ▼ | |
Publication Type
Education Level
| Higher Education | 540 |
| Postsecondary Education | 371 |
| Secondary Education | 254 |
| High Schools | 186 |
| Middle Schools | 48 |
| Elementary Education | 43 |
| Junior High Schools | 42 |
| Grade 10 | 25 |
| Grade 11 | 20 |
| Grade 9 | 20 |
| Grade 8 | 17 |
| More ▼ | |
Audience
| Teachers | 205 |
| Practitioners | 195 |
| Researchers | 65 |
| Students | 19 |
| Policymakers | 2 |
| Administrators | 1 |
| Community | 1 |
| Parents | 1 |
Location
| Turkey | 39 |
| Indonesia | 38 |
| China | 20 |
| Australia | 19 |
| Germany | 16 |
| Israel | 15 |
| Canada | 12 |
| United Kingdom | 12 |
| Colorado | 11 |
| Croatia | 11 |
| Netherlands | 11 |
| More ▼ | |
Laws, Policies, & Programs
| Elementary and Secondary… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Moradi, Moein; Liu, Lin; Luchies, Carl; Patterson, Meagan M.; Darban, Behnaz – Education Sciences, 2018
This study explored the effectiveness of online instructional modules for providing supplementary instruction in basic mathematics and physics concepts. The modules were developed in accordance with a cognitive apprenticeship model. Participants (N = 47) were students enrolled in a required Statics course at a midwestern university. Participants…
Descriptors: Mathematics Instruction, Science Instruction, Physics, Learning Modules
Berge, Maria; Weilenmann, Alexandra – European Journal of Engineering Education, 2014
In educational research, it is well-known that collaborative work on core conceptual issues in physics leads to significant improvements in students' conceptual understanding. In this paper, we explore collaborative learning in action, adding to previous research in engineering education with a specific focus on the students' use of free body…
Descriptors: Foreign Countries, Engineering Education, Group Dynamics, Cooperative Learning
Susac, Ana; Bubic, Andreja; Martinjak, Petra; Planinic, Maja; Palmovic, Marijan – Physical Review Physics Education Research, 2017
Developing a better understanding of the measurement process and measurement uncertainty is one of the main goals of university physics laboratory courses. This study investigated the influence of graphical representation of data on student understanding and interpreting of measurement results. A sample of 101 undergraduate students (48 first year…
Descriptors: Measurement, College Science, Physics, Science Laboratories
Brown, Benjamin R.; Mason, Andrew; Singh, Chandralekha – Physical Review Physics Education Research, 2016
An earlier investigation found that the performance of advanced students in a quantum mechanics course did not automatically improve from midterm to final exam on identical problems even when they were provided the correct solutions and their own graded exams. Here, we describe a study, which extended over four years, in which upper-level…
Descriptors: Error Correction, Science Instruction, Mechanics (Physics), Quantum Mechanics
Ivanjek, Lana; Susac, Ana; Planinic, Maja; Andrasevic, Aneta; Milin-Sipus, Zeljka – Physical Review Physics Education Research, 2016
This study investigates university students' graph interpretation strategies and difficulties in mathematics, physics (kinematics), and contexts other than physics. Eight sets of parallel (isomorphic) mathematics, physics, and other context questions about graphs, which were developed by us, were administered to 385 first-year students at the…
Descriptors: Student Attitudes, Graphs, Physics, Science Instruction
Abdullah, Helmi – Asia-Pacific Forum on Science Learning and Teaching, 2014
Nowadays, many researchers discovered various effective strategies in teaching physics, from traditional to modern strategy. However, research on physics problem solving is still inadequate. Physics problem is an integral part of physics learning and requires strategy to solve it. Besides that, problem solving is the best way to convey principle,…
Descriptors: Problem Solving, Physics, Motion, Science Education
Almudi, Jose Manuel; Ceberio, Mikel – International Journal of Science and Mathematics Education, 2015
This study explored the quality of arguments used by first-year engineering university students enrolled in a traditional physics course dealing with electromagnetic induction and related problem solving where they had to assess whether the electromagnetic induction phenomenon would occur. Their conclusions were analyzed for the relevance of the…
Descriptors: Persuasive Discourse, Engineering Education, College Freshmen, Physics
Wittmann, Michael C.; Black, Katrina E. – Physical Review Special Topics - Physics Education Research, 2015
Students learning to separate variables in order to solve a differential equation have multiple ways of correctly doing so. The procedures involved in "separation" include "division" or "multiplication" after properly "grouping" terms in an equation, "moving" terms (again, at times grouped) from…
Descriptors: Mathematics, Calculus, Problem Solving, Mechanics (Physics)
Ibrahim, Bashirah; Rebello, N. Sanjay – Physical Review Special Topics - Physics Education Research, 2013
In this paper, we report on a project concerned with the role of cognition during problem solving. We specifically explore the categories of mental representations that students work with during problem solving of different representational task formats. The sample, consisting of 19 engineering students taking a calculus-based physics course,…
Descriptors: Problem Solving, Cognitive Processes, College Students, Physics
Leak, Anne E.; Rothwell, Susan L.; Olivera, Javier; Zwickl, Benjamin; Vosburg, Jarrett; Martin, Kelly Norris – Physical Review Physics Education Research, 2017
Problem-solving strategies learned by physics undergraduates should prepare them for real-world contexts as they transition from students to professionals. Yet, graduate students in physics-intensive research face problems that go beyond problem sets they experienced as undergraduates and are solved by different strategies than are typically…
Descriptors: Problem Solving, Physics, Doctoral Programs, Graduate Students
Chang, C.-J.; Chang, M.-H.; Liu, C.-C.; Chiu, B.-C.; Fan Chiang, S.-H.; Wen, C.-T.; Hwang, F.-K.; Chao, P.-Y.; Chen, Y.-L.; Chai, C.-S. – Journal of Computer Assisted Learning, 2017
Researchers have indicated that the collaborative problem-solving space afforded by the collaborative systems significantly impact the problem-solving process. However, recent investigations into collaborative simulations, which allow a group of students to jointly manipulate a problem in a shared problem space, have yielded divergent results…
Descriptors: Cooperative Learning, Problem Solving, Questionnaires, Feedback (Response)
Macalalag, Augusto Z., Ed.; Sahin, Ismail, Ed.; Johnson, Joseph, Ed.; Bicer, Ali, Ed. – Online Submission, 2022
For many years the need to educate and support our teachers to implement science and mathematics education has been ongoing throughout the world (National Academies of Sciences, Engineering, and Medicine, 2019; Mundry et al., 2009). In more recent years, this call has extended to include teaching through integrated science, technology,…
Descriptors: STEM Education, Special Education, Inclusion, Students with Disabilities
De, Subhranil – Physics Teacher, 2013
This article pertains to a problem on static friction that concerns a block of
mass "M" resting on a rough inclined plane. The coefficient of static friction is microsecond and the inclination angle theta is greater than tan[superscript -1] microsecond. This means that some force "F" must be applied (see Fig. 1) to keep the…
Descriptors: Science Instruction, Problem Solving, Mechanics (Physics), Scientific Concepts
Korkmaz, S. D.; Aybek, E. C.; Örücü, M. – Physics Education, 2016
In the modern physics unit included in the course curriculum of grade 10 physics introduced in the 2007-2008 education year, the aim is that students at this grade level are aware of any developments which constitute modern physics and may be considered new, and interpret whether mass, length and time values of the motions at any velocities close…
Descriptors: Science Instruction, Physics, Grade 10, Secondary School Science
Mason, Andrew J.; Singh, Chandralekha – Physics Teacher, 2016
Students must learn effective problem solving strategies in order to develop expertise in physics. Effective problem solving strategies include a conceptual analysis of the problem followed by planning of the solution, and then implementation, evaluation, and reflection upon the process. Research suggests that converting a problem from the initial…
Descriptors: Physics, Problem Solving, Cooperative Learning, Reflection

Peer reviewed
Direct link
