Publication Date
| In 2026 | 0 |
| Since 2025 | 4 |
| Since 2022 (last 5 years) | 12 |
| Since 2017 (last 10 years) | 29 |
| Since 2007 (last 20 years) | 59 |
Descriptor
Source
Author
| Woods, Donald R. | 4 |
| Brauner, Neima | 3 |
| Foley, Greg | 3 |
| Shacham, Mordechai | 3 |
| Case, Jennifer | 2 |
| Cutlip, Michael B. | 2 |
| Miller, Ronald L. | 2 |
| Nelson, David W. | 2 |
| Alexis N. Prybutok | 1 |
| Allen, R. M. | 1 |
| Anderson, Anthony | 1 |
| More ▼ | |
Publication Type
Education Level
| Higher Education | 57 |
| Postsecondary Education | 38 |
| High Schools | 1 |
| Secondary Education | 1 |
Audience
| Teachers | 13 |
| Practitioners | 10 |
| Students | 3 |
| Researchers | 1 |
Location
| South Africa | 3 |
| Michigan | 2 |
| New Jersey | 2 |
| Spain | 2 |
| Sweden | 2 |
| Australia | 1 |
| Canada | 1 |
| Croatia | 1 |
| Cuba | 1 |
| Europe | 1 |
| Germany | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Martinez-Luaces, Victor – International Journal of Mathematical Education in Science and Technology, 2009
In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…
Descriptors: Engineering Education, Kinetics, Equations (Mathematics), Teaching Methods
Coronell, Daniel G.; Hariri, M. Hossein – Chemical Engineering Education, 2009
Computer programming in undergraduate engineering education all too often begins and ends with the freshman programming course. Improvements in computer technology and curriculum revision have improved this situation, but often at the expense of the students' learning due to the use of commercial "black box" software. This paper describes the…
Descriptors: Chemical Engineering, Engineering Education, Undergraduate Study, Problem Solving
Murthi, Manohar; Shea, Lonnie D.; Snurr, Randall Q. – Chemical Engineering Education, 2009
Problems requiring numerical solutions of differential equations or the use of agent-based modeling are presented for use in a course on mass transfer. These problems were solved using the popular technical computing language MATLABTM. Students were introduced to MATLAB via a problem with an analytical solution. A more complex problem to which no…
Descriptors: Scientific Concepts, Chemical Engineering, Engineering Education, Calculus
Savage, Phillip E. – Chemical Engineering Education, 2008
Students rarely see closed-form analytical rate equations derived from underlying chemical mechanisms that contain more than a few steps unless restrictive simplifying assumptions (e.g., existence of a rate-determining step) are made. Yet, work published decades ago allows closed-form analytical rate equations to be written quickly and easily for…
Descriptors: Equations (Mathematics), Algebra, Teaching Methods, Computation
Montanes, Maria T.; Palomares, Antonio E. – Chemical Engineering Education, 2008
In this work we show how specific challenges related to sustainable development can be integrated into chemical engineering education by introducing an environmental management system in the laboratory where the students perform their experimental lessons. It is shown how the system has been developed and implemented in the laboratory, what role…
Descriptors: Engineering Education, Management Systems, Laboratory Experiments, Chemical Engineering
Forbes, Neil S. – Chemical Engineering Education, 2008
This article describes a teaching module designed to enhance engineering creativity in an introductory chemical engineering course. The module includes an exercise to design column packing material, and an open-ended research project to describe the societal impact of chemical engineering. These assignments were created to illustrate the benefit…
Descriptors: Creativity, Research Projects, Chemical Engineering, Engineering Education
Seay, Jeffrey R.; Eden, Mario R. – Chemical Engineering Education, 2008
This paper introduces, via case study example, the benefit of including risk assessment methodology and inherently safer design practices into the curriculum for chemical engineering students. This work illustrates how these tools can be applied during the earliest stages of conceptual process design. The impacts of decisions made during…
Descriptors: Engineering Education, Chemical Engineering, Methods, Risk
Liu, Xue; Howley, Maureen A.; Johri, Jayati; Glasser, Benjamin J. – Chemical Engineering Education, 2008
A simplified model of an industrially relevant fluid-particle flow system is analyzed using linear stability theory. Instabilities of the uniform state of a fluidized bed are investigated in response to small flow perturbations. Students are expected to perform each step of the computational analysis, and physical insight into key mechanistic…
Descriptors: Models, Investigations, Chemical Engineering, Problem Solving
Ferguson, Robert; Bodner, George M. – Chemistry Education Research and Practice, 2008
This paper reports results of a qualitative study of sixteen students enrolled in a second year organic chemistry course for chemistry and chemical engineering majors. The focus of the study was student use of the arrow-pushing formalism that plays a central role in both the teaching and practice of organic chemistry. The goal of the study was to…
Descriptors: Majors (Students), Organic Chemistry, Chemical Engineering, Qualitative Research
Shacham, Mordechai; Brauner, Neima; Ashurst, W. Robert; Cutlip, Michael B. – Chemical Engineering Education, 2008
Mathematical software packages such as Polymath, MATLAB, and Mathcad are currently widely used for engineering problem solving. Applications of several of these packages to typical chemical engineering problems have been demonstrated by Cutlip, et al. The main characteristic of these packages is that they provide a "problem-solving environment…
Descriptors: Mathematical Models, Computer Software, Problem Solving, Chemical Engineering
Shacham, Mordechai; Cutlip, Michael B.; Brauner, Neima – Chemical Engineering Education, 2009
A continuing challenge to the undergraduate chemical engineering curriculum is the time-effective incorporation and use of computer-based tools throughout the educational program. Computing skills in academia and industry require some proficiency in programming and effective use of software packages for solving 1) single-model, single-algorithm…
Descriptors: Computer Software, Computer Literacy, Problem Solving, Chemical Engineering
Ehrman, Sheryl H.; Castellanos, Patricia; Dwivedi, Vivek; Diemer, R. Bertrum – Chemical Engineering Education, 2007
A particle technology design problem incorporating population balance modeling was developed and assigned to senior and first-year graduate students in a Particle Science and Technology course. The problem focused on particle collection, with a pipeline agglomerator, Cyclone, and baghouse comprising the collection system. The problem was developed…
Descriptors: Chemical Engineering, Engineering Education, Graduate Students, Design
O'Connor, Kim C. – Chemical Engineering Education, 2007
Advances in the biological sciences necessitate the training of chemical engineers to translate these fundamental discoveries into applications that will benefit society. Accordingly, Tulane University revised its core chemical engineering curriculum in 2005 to include a new introductory course in bioengineering and biotechnology for sophomores.…
Descriptors: Introductory Courses, Biotechnology, Chemical Engineering, Science Instruction
Peer reviewedWoods, Donald R.; Kourti, Theodora; Wood, Philip E.; Sheardown, Heather; Crowe, Cameron M.; Dickson, James M. – Chemical Engineering Education, 2002
Carries on from an article about the context for assessment of problem solving skills. Describes other forms of evidence in problem solving skill besides the options given in the previous article. Lists eight forms of evidence related more directly to the problem solving process. Analyzes the relationship among some of these suggested forms of…
Descriptors: Chemical Engineering, Evaluation, Higher Education, Problem Solving
Peer reviewedCase, Jennifer; Gunstone, Richard; Lewis, Alison – Research in Science Education, 2001
Investigates the metacognitive development of students in a second year chemical engineering course which had such development as an explicit goal. Concludes, among other results, that there is a shift in student approach from a focus on solving problems towards a stronger valuing of conceptual understanding. (Author/MM)
Descriptors: Chemical Engineering, Concept Formation, Educational Strategies, Higher Education

Direct link
