Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 7 |
Since 2016 (last 10 years) | 11 |
Since 2006 (last 20 years) | 12 |
Descriptor
Coding | 12 |
Programming | 12 |
Computer Science Education | 9 |
Models | 7 |
Classification | 6 |
Artificial Intelligence | 4 |
College Students | 4 |
Data Analysis | 4 |
Evaluation Methods | 4 |
Feedback (Response) | 4 |
Prediction | 4 |
More ▼ |
Source
International Educational… | 12 |
Author
Barnes, Tiffany | 3 |
Boyer, Kristy Elizabeth | 2 |
Chi, Min | 2 |
Höppner, Frank | 2 |
Shi, Yang | 2 |
Barnes, Tiffany, Ed. | 1 |
Celepkolu, Mehmet | 1 |
Emerson, Andrew | 1 |
Erickson, Bradley | 1 |
Gal, Kobi | 1 |
Gao, Zhikai | 1 |
More ▼ |
Publication Type
Speeches/Meeting Papers | 10 |
Reports - Research | 8 |
Collected Works - Proceedings | 2 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 6 |
Postsecondary Education | 6 |
Junior High Schools | 3 |
Middle Schools | 3 |
Secondary Education | 3 |
Elementary Education | 2 |
Early Childhood Education | 1 |
Grade 6 | 1 |
Grade 7 | 1 |
Intermediate Grades | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
What Works Clearinghouse Rating
Gao, Zhikai; Erickson, Bradley; Xu, Yiqiao; Lynch, Collin; Heckman, Sarah; Barnes, Tiffany – International Educational Data Mining Society, 2022
In computer science education timely help seeking during large programming projects is essential for student success. Help-seeking in typical courses happens in office hours and through online forums. In this research, we analyze students coding activities and help requests to understand the interaction between these activities. We collected…
Descriptors: Computer Science Education, College Students, Programming, Coding
Jahnke, Maximilian; Höppner, Frank – International Educational Data Mining Society, 2022
The value of an instructor is that she exactly recognizes what the learner is struggling with and provides constructive feedback straight to the point. This work aims at a step towards this type of feedback in the context of an introductory programming course, where students perform program execution tracing to align their understanding of Java…
Descriptors: Programming, Coding, Computer Science Education, Error Patterns
Höppner, Frank – International Educational Data Mining Society, 2021
Various similarity measures for source code have been proposed, many rely on edit- or tree-distance. To support a lecturer in quickly assessing live or online exercises with respect to "approaches taken by the students," we compare source code on a more abstract, semantic level. Even if novice student's solutions follow the same idea,…
Descriptors: Coding, Classification, Programming, Computer Science Education
Tsabari, Stav; Segal, Avi; Gal, Kobi – International Educational Data Mining Society, 2023
Automatically identifying struggling students learning to program can assist teachers in providing timely and focused help. This work presents a new deep-learning language model for predicting "bug-fix-time", the expected duration between when a software bug occurs and the time it will be fixed by the student. Such information can guide…
Descriptors: College Students, Computer Science Education, Programming, Error Patterns
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Mao, Ye; Shi, Yang; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2021
As students learn how to program, both their programming code and their understanding of it evolves over time. In this work, we present a general data-driven approach, named "Temporal-ASTNN" for modeling student learning progression in open-ended programming domains. Temporal-ASTNN combines a novel neural network model based on abstract…
Descriptors: Programming, Computer Science Education, Learning Processes, Learning Analytics
Ma, Yingbo; Katuka, Gloria Ashiya; Celepkolu, Mehmet; Boyer, Kristy Elizabeth – International Educational Data Mining Society, 2022
Collaborative learning is a complex process during which two or more learners exchange opinions, construct shared knowledge, and solve problems together. While engaging in this interactive process, learners' satisfaction toward their partners plays a crucial role in defining the success of the collaboration. If intelligent systems could predict…
Descriptors: Middle School Students, Cooperative Learning, Prediction, Peer Relationship
Paaßen, Benjamin; Jensen, Joris; Hammer, Barbara – International Educational Data Mining Society, 2016
The first intelligent tutoring systems for computer programming have been proposed more than 30 years ago, mostly focusing on well defined programming tasks e.g. in the context of logic programming. Recent systems also teach complex programs, where explicit modelling of every possible program and mistake is no longer possible. Such systems are…
Descriptors: Intelligent Tutoring Systems, Programming, Computer Science Education, Data
Emerson, Andrew; Rodríguez, Fernando J.; Mott, Bradford; Smith, Andy; Min, Wookhee; Boyer, Kristy Elizabeth; Smith, Cody; Wiebe, Eric; Lester, James – International Educational Data Mining Society, 2019
Recent years have seen a growing interest in block-based programming environments for computer science education. While these environments hold significant potential for novice programmers, they lack the adaptive support necessary to accommodate students exhibiting a wide range of initial capabilities and dispositions toward computing. A promising…
Descriptors: Programming, Computer Science Education, Feedback (Response), Prediction
Wang, Lisa; Sy, Angela; Liu, Larry; Piech, Chris – International Educational Data Mining Society, 2017
Modeling student knowledge while students are acquiring new concepts is a crucial stepping stone towards providing personalized automated feedback at scale. We believe that rich information about a student's learning is captured within her responses to open-ended problems with unbounded solution spaces, such as programming exercises. In addition,…
Descriptors: Online Courses, Knowledge Level, Pedagogical Content Knowledge, Scaffolding (Teaching Technique)
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection