NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Lincoln, James – Physics Teacher, 2019
Python is a free, text-based programming language that has already been used by those who do physics research to great effect. But students can also learn to use it and, through its use, learn other aspects of physics--especially ones that are difficult or impossible to perform as physical labs. This article serves as a most-fundamental start for…
Descriptors: Science Instruction, Physics, Computer Uses in Education, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Martínez, Alexuan; Nieves, Christian; Rúa, Armando – Physics Teacher, 2021
Many physics projects recently designed for high school teachers use Arduino as the main tool for managing sensors and data acquisition. This is a low-cost integrated development environment programmed with a simplified version of the C++ language. In comparison, the Raspberry Pi 3 platform, which also allows for the design of physics projects,…
Descriptors: Science Instruction, Science Laboratories, Physics, Secondary School Science
Peer reviewed Peer reviewed
Direct linkDirect link
Headly, David Miles; Willard, Howard – Physics Teacher, 2019
A single laboratory exercise in introductory physics that includes a bit of calculus, a little programming, some breadboard wiring, and making mathematical connections between motion, net force, and power provides a nice STEM experience for students. If you can add in a biomechanics component you hopefully have something that overall can be an…
Descriptors: Science Instruction, Physics, Calculus, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Ball, Doug; Tofel-Grehl, Colby – Physics Teacher, 2020
Electric potential is one of the most challenging concepts taught in high school physics classes due to the abstract nature of the concept. When taught, electric potential is often taught using a poorly triangulated set of instructional analogies, each possessing different strengths and limitations. Within this paper we share our learning from a…
Descriptors: High School Students, Physics, Science Instruction, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Apple, Lillian; Baunach, John; Connelly, Glenda; Gahlhoff, Sonia; Romanowicz, Colleen Megowan; Vieyra, Rebecca Elizabeth; Walker, Lucas – Physics Teacher, 2021
Multiple initiatives contend that all students should master computational thinking, including the "Next Generation Science Standards, the K-12 Framework for Computational Thinking," and Code.org. In turn, many physics teachers have begun to explore a variety of approaches to integrating computational modeling through programming. These…
Descriptors: Science Instruction, High Schools, Secondary School Science, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Flannery, William – Physics Teacher, 2019
This paper describes a high school or introductory university course in scientific programming that introduces the computer revolution into the physics curriculum at the beginning. In the first one-hour lecture, Euler's method is presented and used to compute a solution to the analytically unsolvable two-body problem. In the remainder of the…
Descriptors: Science Instruction, Physics, Secondary School Science, High Schools
Peer reviewed Peer reviewed
Aubrecht, Gordon J., II; Bolland, T. Kenneth; Ziegler, Michael G. – Physics Teacher, 1999
Describes a way of incorporating animations into spreadsheets using Excel software. (WRM)
Descriptors: Animation, Authoring Aids (Programming), Computer Uses in Education, Demonstrations (Science)