Publication Date
| In 2026 | 0 |
| Since 2025 | 4 |
| Since 2022 (last 5 years) | 28 |
| Since 2017 (last 10 years) | 50 |
| Since 2007 (last 20 years) | 66 |
Descriptor
| Prediction | 68 |
| Programming | 68 |
| Computer Science Education | 33 |
| Artificial Intelligence | 27 |
| Foreign Countries | 27 |
| Models | 27 |
| College Students | 22 |
| Intelligent Tutoring Systems | 22 |
| Teaching Methods | 21 |
| Computer Software | 19 |
| Data Analysis | 17 |
| More ▼ | |
Source
Author
Publication Type
| Reports - Research | 48 |
| Journal Articles | 38 |
| Speeches/Meeting Papers | 14 |
| Collected Works - Proceedings | 11 |
| Dissertations/Theses -… | 5 |
| Reports - Descriptive | 3 |
| Guides - Non-Classroom | 1 |
| Tests/Questionnaires | 1 |
Education Level
Audience
Location
| Brazil | 3 |
| Finland | 3 |
| Germany | 3 |
| Netherlands | 3 |
| Pennsylvania | 3 |
| Spain | 3 |
| Australia | 2 |
| China | 2 |
| France | 2 |
| Israel | 2 |
| Japan | 2 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
| Massachusetts Comprehensive… | 1 |
| Program for International… | 1 |
What Works Clearinghouse Rating
Muntasir Hoq; Ananya Rao; Reisha Jaishankar; Krish Piryani; Nithya Janapati; Jessica Vandenberg; Bradford Mott; Narges Norouzi; James Lester; Bita Akram – International Educational Data Mining Society, 2025
In Computer Science (CS) education, understanding factors contributing to students' programming difficulties is crucial for effective learning support. By identifying specific issues students face, educators can provide targeted assistance to help them overcome obstacles and improve learning outcomes. While identifying sources of struggle, such as…
Descriptors: Computer Science Education, Programming, Misconceptions, Error Patterns
Hoq, Muntasir; Brusilovsky, Peter; Akram, Bita – International Educational Data Mining Society, 2023
Prediction of student performance in introductory programming courses can assist struggling students and improve their persistence. On the other hand, it is important for the prediction to be transparent for the instructor and students to effectively utilize the results of this prediction. Explainable Machine Learning models can effectively help…
Descriptors: Academic Achievement, Prediction, Models, Introductory Courses
Shen, Guohua; Yang, Sien; Huang, Zhiqiu; Yu, Yaoshen; Li, Xin – Education and Information Technologies, 2023
Due to the growing demand for information technology skills, programming education has received increasing attention. Predicting students' programming performance helps teachers realize their teaching effect and students' learning status in time to provide support for students. However, few of the existing researches have taken the code that…
Descriptors: Prediction, Programming, Student Characteristics, Profiles
Maciej Pankiewicz; Yang Shi; Ryan S. Baker – International Educational Data Mining Society, 2025
Knowledge Tracing (KT) models predicting student performance in intelligent tutoring systems have been successfully deployed in several educational domains. However, their usage in open-ended programming problems poses multiple challenges due to the complexity of the programming code and a complex interplay between syntax and logic requirements…
Descriptors: Algorithms, Artificial Intelligence, Models, Intelligent Tutoring Systems
Milos Ilic; Goran Kekovic; Vladimir Mikic; Katerina Mangaroska; Lazar Kopanja; Boban Vesin – IEEE Transactions on Learning Technologies, 2024
In recent years, there has been an increasing trend of utilizing artificial intelligence (AI) methodologies over traditional statistical methods for predicting student performance in e-learning contexts. Notably, many researchers have adopted AI techniques without conducting a comprehensive investigation into the most appropriate and accurate…
Descriptors: Artificial Intelligence, Academic Achievement, Prediction, Programming
Shi, Yang; Chi, Min; Barnes, Tiffany; Price, Thomas W. – International Educational Data Mining Society, 2022
Knowledge tracing (KT) models are a popular approach for predicting students' future performance at practice problems using their prior attempts. Though many innovations have been made in KT, most models including the state-of-the-art Deep KT (DKT) mainly leverage each student's response either as correct or incorrect, ignoring its content. In…
Descriptors: Programming, Knowledge Level, Prediction, Instructional Innovation
Adam Diamant – INFORMS Transactions on Education, 2024
Managers are increasingly being tasked with overseeing data-driven projects that incorporate prescriptive and predictive models. Furthermore, basic knowledge of the data analytics pipeline is a fundamental requirement in many modern organizations. Given the central importance of analytics in today's business environment, there is a growing demand…
Descriptors: Business Administration Education, Graduate Students, Prediction, Mathematical Concepts
Moresi, Marco; Gomez, Marcos J.; Benotti, Luciana – IEEE Transactions on Learning Technologies, 2021
Based on hundreds of thousands of hours of data about how students learn in massive open online courses, educational machine learning promises to help students who are learning to code. However, in most classrooms, students and assignments do not have enough historical data for feeding these data hungry algorithms. Previous work on predicting…
Descriptors: Prediction, Difficulty Level, Programming, Online Courses
Abdullahi Yusuf; Norah Md Noor; Shamsudeen Bello – Education and Information Technologies, 2024
Studies examining students' learning behavior predominantly employed rich video data as their main source of information due to the limited knowledge of computer vision and deep learning algorithms. However, one of the challenges faced during such observation is the strenuous task of coding large amounts of video data through repeated viewings. In…
Descriptors: Learning Analytics, Student Behavior, Video Technology, Classification
Zhang, Yingbin; Pinto, Juan D.; Fan, Aysa Xuemo; Paquette, Luc – Journal of Educational Data Mining, 2023
The second CSEDM data challenge aimed at finding innovative methods to use students' programming traces to model their learning. The main challenge of this task is how to decide which past problems are relevant for predicting performance on a future problem. This paper proposes a set of weighting schemes to address this challenge. Specifically,…
Descriptors: Problem Solving, Introductory Courses, Computer Science Education, Programming
Kovalkov, Anastasia; Paaßen, Benjamin; Segal, Avi; Pinkwart, Niels; Gal, Kobi – IEEE Transactions on Learning Technologies, 2021
Promoting creativity is considered an important goal of education, but creativity is notoriously hard to measure. In this article, we make the journey from defining a formal measure of creativity, that is, efficiently computable to applying the measure in a practical domain. The measure is general and relies on core theoretical concepts in…
Descriptors: Creativity, Programming, Measurement Techniques, Models
Ma, Yingbo; Katuka, Gloria Ashiya; Celepkolu, Mehmet; Boyer, Kristy Elizabeth – International Educational Data Mining Society, 2022
Collaborative learning is a complex process during which two or more learners exchange opinions, construct shared knowledge, and solve problems together. While engaging in this interactive process, learners' satisfaction toward their partners plays a crucial role in defining the success of the collaboration. If intelligent systems could predict…
Descriptors: Middle School Students, Cooperative Learning, Prediction, Peer Relationship
Experiencing Enjoyment in Visual Programming Tasks Promotes Self-Efficacy and Reduces the Gender Gap
Robbert Smit; Rahel Schmid; Nicolas Robin – British Journal of Educational Technology, 2025
Secondary school students (N = 269) participated in a daylong visual programming course held in a stimulating environment for start-up enterprises. The tasks were application-oriented and partly creative. For example, a wearable device with light-emitting diodes, (ie, LEDs) could be applied to a T-shirt and used for optical messages. Our research…
Descriptors: Self Efficacy, Gender Differences, Prediction, Student Attitudes
Aykut Durak; Vahide Bulut – Technology, Knowledge and Learning, 2025
The study uses the partial least squares-structural equation modeling (PLS-SEM) algorithm to predict the factors affecting the programming performance (PPE) (low, high) of the students receiving computer programming education. The participants of the study consist of 763 students who received programming education. In the analysis of the data, the…
Descriptors: Prediction, Low Achievement, High Achievement, Academic Achievement
Veerasamy, Ashok Kumar; Laakso, Mikko-Jussi; D'Souza, Daryl – Informatics in Education, 2022
Previous studies have proposed many indicators to assess the effect of student engagement in learning and academic achievement but have not yet been clearly articulated. In addition, while student engagement tracking systems have been designed, they rely on the log data but not on performance data. This paper presents results of a non-machine…
Descriptors: Formative Evaluation, Educational Indicators, Learner Engagement, At Risk Students

Peer reviewed
Direct link
