NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
Program for International…1
What Works Clearinghouse Rating
Showing 1 to 15 of 135 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Tessa Charles; Carl Gwilliam – Journal for STEM Education Research, 2023
STEM fields, such as physics, increasingly rely on complex programs to analyse large datasets, thus teaching students the required programming skills is an important component of all STEM curricula. Since undergraduate students often have no prior coding experience, they are reliant on error messages as the primary diagnostic tool to identify and…
Descriptors: Automation, Feedback (Response), Error Correction, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Pamela Liebig; Viviane Filor; Mariana Scheumann; Martina Buchholz; Klaus Jung – Technology, Knowledge and Learning, 2024
Many academic teachers present data as static graphics in their lectures and courses. However, data structures have become more complex in the last decades, especially in the biomedical disciplines, and interactive graphics can provide a better means to communicate the scientific contents to students. Besides, the technological qualifications of…
Descriptors: Medicine, Natural Sciences, Workshops, Computer Graphics
Peer reviewed Peer reviewed
Direct linkDirect link
Allbee, Quinn; Barber, Robert – Biochemistry and Molecular Biology Education, 2021
Biology is a data-driven discipline facilitated greatly by computer programming skills. This article describes an introductory experiential programming activity that can be integrated into distance learning environments. Students are asked to develop their own Python programs to identify the nature of alleles linked to disease. This activity…
Descriptors: Genetics, Science Instruction, Programming Languages, Biology
Peer reviewed Peer reviewed
Direct linkDirect link
Forest Mannan – International Journal of Mathematical Education in Science and Technology, 2024
This article considers starting with an existing SIMIODE modeling scenario [Winkel, B. (2015). 1-031-CoolIt-ModelingScenario. SIMIODE (Version 2.0). "QUBES Educational Resources." https://doi.org/10.25334/3WG8-EC31] that develops Newton's law of cooling by considering data on the cooling of a beaker of water in a room, and expanding upon…
Descriptors: Calculus, Mathematical Models, Programming, Heat
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Jianlan; Zhang, Yuanlin; Jones, Arthur; Eckel, Rory; Hawkins, Joshua; Musslewhite, Darrel – Journal of Computers in Mathematics and Science Teaching, 2022
Despite the importance of computer science education and computational thinking, there have been limited examples of computer science education at K-12 classrooms that authentically represents the work of computer scientists, especially programming. One reason is the lack of a measurable definition of computational thinking and a programming…
Descriptors: Teaching Methods, Computer Science Education, Programming, Thinking Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Ricardo J. Ferna´ndez-Tera´n; Estefani´a Sucre-Rosales; Lorenzo Echevarria; Florencio E. Hernández – Journal of Chemical Education, 2022
We present a detailed yet easy-to-follow discussion of the mathematical treatment of time-resolved spectroscopic data in a model-based approach. This is accompanied and complemented by an example of a colorful and pedagogically rich chemical reaction: the permanganate oxidation of sugars in basic aqueous media (often known as the chameleon…
Descriptors: Spectroscopy, Chemistry, Science Instruction, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Lincoln, James – Physics Teacher, 2019
Python is a free, text-based programming language that has already been used by those who do physics research to great effect. But students can also learn to use it and, through its use, learn other aspects of physics--especially ones that are difficult or impossible to perform as physical labs. This article serves as a most-fundamental start for…
Descriptors: Science Instruction, Physics, Computer Uses in Education, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
G. Puttick; M. Cassidy; E. Tucker-Raymond; G. M. Troiano; C. Harteveld – Journal of Research in Science Teaching, 2024
Much research attention has been focused on learning through game playing. However, very little has been focused on student learning through game making, especially in science. Moreover, none of the studies on learning through making games has presented an account of how students engage in the process of game design in real time. The present study…
Descriptors: Design, Computer Games, Peer Teaching, Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Gingl, Zoltan; Mingesz, Robert; Makan, Gergely; Mellar, Janos – Physics Education, 2019
The Arduino is a popular and useful tool in STEM and physics education. Teacher demonstrations, laboratory and home work are supported by an incredibly wide range of application examples for a low cost. Since the heart of the Arduino board is an industrial microcontroller, it is a good chance to teach the basics of the related rules, standards and…
Descriptors: Physics, Science Instruction, Programming, STEM Education
Peer reviewed Peer reviewed
Direct linkDirect link
Bayar, Mirac Furkan; Tas, Yasemin – Alberta Journal of Educational Research, 2022
This study aimed to investigate the effects of robotic coding supported Design-Based Science Instruction (RC-DBSI) on sixth-grade students' science process skills. One-group pretest-posttest experimental design was employed in the study. Participants consisted of thirty-nine sixth-grade students enrolled in a public middle school located in the…
Descriptors: Robotics, Programming, Design, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Rachmatullah, Arif; Wiebe, Eric N. – Journal of Science Teacher Education, 2023
The inclusion of computational thinking (CT) into science curricula has advocated implementing a computationally rich science learning environment where students learn science via building models in a computer programming platform. Such an approach may influence teachers' self-efficacy for teaching science which may also be associated with their…
Descriptors: Middle School Teachers, Self Efficacy, Science Instruction, Educational Environment
Peer reviewed Peer reviewed
PDF on ERIC Download full text
García-Carrillo, Christian; Greca, Ileana María; Fernández-Hawrylak, María – Education Sciences, 2021
An analysis is presented in this study that provides insight into a practical training process and its impact on teachers and their viewpoints toward the integrated STEM approach used in that training process, together with educational coding and robotics, over the first years of compulsory primary education, where STEM implementations are…
Descriptors: Teacher Attitudes, Science Instruction, STEM Education, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Zoe C. M. Davidson; Shuping Dang; Xenofon Vasilakos – IEEE Transactions on Learning Technologies, 2024
Raspberry Pi Pico, based on chip RP2040, is an easy-to-use development microcontroller board that can provide flexible input/output functions and meets the teaching needs of basic electronics to first-year university undergraduates. This article presents our blended laboratory design using Raspberry Pi Pico for the course unit Digital Circuits and…
Descriptors: College Freshmen, Electronics, Technology Education, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Morales-Vidales, J. Abraham; Salazar, S. Alejandro Sandoval; Jacobo-Fernández, Jimena M.; Tlahuice-Flores, Alfredo – Journal of Chemical Education, 2020
This work covers a three-week program designed to provide undergraduate students with a background in structural chemistry and materials science. Sessions are based on the programming of regular polyhedra and their geometrical relationships by using an object-oriented language (i.e., POV-Ray). Three lectures introduce the basics of programming…
Descriptors: Chemistry, Geometry, College Science, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Jones, Oliver A. H.; Stevenson, Paul G.; Hameka, Simone C.; Osborne, Dale A.; Taylor, Patrick D.; Spencer, Michelle J. S. – Journal of Chemical Education, 2021
The use of three-dimensional printing in chemistry education has expanded greatly in the past 10 years. The technique has been used to demonstrate a range of concepts including molecular structure, orbitals, and point groups; to produce chemical equipment such as cuvettes and columns; and even to print out mathematical shapes and functions. Here,…
Descriptors: Science Instruction, Chemistry, Spectroscopy, Printing
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9