Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 8 |
Since 2016 (last 10 years) | 18 |
Since 2006 (last 20 years) | 20 |
Descriptor
Intelligent Tutoring Systems | 20 |
Programming | 20 |
Undergraduate Students | 20 |
Computer Science Education | 17 |
Foreign Countries | 9 |
Teaching Methods | 9 |
Computer Software | 6 |
Introductory Courses | 6 |
Student Attitudes | 6 |
Data Analysis | 5 |
Feedback (Response) | 5 |
More ▼ |
Source
Author
Barnes, Tiffany | 2 |
Anikin, Anton | 1 |
Ayub, Mewati | 1 |
Barros, Beatriz | 1 |
Becker, Brett A. | 1 |
Bertoa, Manuel F. | 1 |
Binti Ahmad, Rodina | 1 |
Chrysafiadi, Konstantina | 1 |
Conejo, Ricardo | 1 |
Craig, Michelle | 1 |
David Roldan-Alvarez | 1 |
More ▼ |
Publication Type
Journal Articles | 14 |
Reports - Research | 13 |
Collected Works - Proceedings | 3 |
Speeches/Meeting Papers | 3 |
Reports - Descriptive | 2 |
Reports - Evaluative | 2 |
Tests/Questionnaires | 2 |
Education Level
Audience
Laws, Policies, & Programs
Assessments and Surveys
ACT Assessment | 1 |
Learning Style Inventory | 1 |
Motivated Strategies for… | 1 |
What Works Clearinghouse Rating
Sychev, Oleg; Penskoy, Nikita; Anikin, Anton; Denisov, Mikhail; Prokudin, Artem – Education Sciences, 2021
Intelligent tutoring systems have become increasingly common in assisting students but are often aimed at isolated subject-domain tasks without creating a scaffolding system from lower- to higher-level cognitive skills, with low-level skills often neglected. We designed and developed an intelligent tutoring system, CompPrehension, which aims to…
Descriptors: Intelligent Tutoring Systems, Comprehension, Undergraduate Students, Computer Science Education
David Roldan-Alvarez; Francisco J. Mesa – IEEE Transactions on Education, 2024
Artificial intelligence (AI) in programming teaching is something that still has to be explored, since in this area assessment tools that allow grading the students work are the most common ones, but there are not many tools aimed toward providing feedback to the students in the process of creating their program. In this work a small sized…
Descriptors: Intelligent Tutoring Systems, Grading, Artificial Intelligence, Feedback (Response)
Chrysafiadi, Konstantina; Virvou, Maria; Tsihrintzis, George A.; Hatzilygeroudis, Ioannis – Education and Information Technologies, 2023
Nowadays, the improvement of digital learning with Artificial Intelligence has attracted a lot of research, as it provides solutions for individualized education styles which are independent of place and time. This is particularly the case for computer science, as a tutoring domain, which is rapidly growing and changing and as such, learners need…
Descriptors: Foreign Countries, Undergraduate Students, Computer Science Education, Programming
Xu, Jia; Wei, Tingting; Lv, Pin – International Educational Data Mining Society, 2022
In an Intelligent Tutoring System (ITS), problem (or question) difficulty is one of the most critical parameters, directly impacting problem design, test paper organization, result analysis, and even the fairness guarantee. However, it is very difficult to evaluate the problem difficulty by organized pre-tests or by expertise, because these…
Descriptors: Prediction, Programming, Natural Language Processing, Databases
Grubišic, Ani; Žitko, Branko; Stankov, Slavomir – Journal of Technology and Science Education, 2020
In intelligent e-learning systems that adapt a learning and teaching process to student knowledge, it is important to adapt the system as quickly as possible. However, adaptation is not possible until the student model is initialized. In this paper, a new approach to student model initialization using domain knowledge representative subset is…
Descriptors: Electronic Learning, Educational Technology, Models, Intelligent Tutoring Systems
Loksa, Dastyni; Margulieux, Lauren; Becker, Brett A.; Craig, Michelle; Denny, Paul; Pettit, Raymond; Prather, James – ACM Transactions on Computing Education, 2022
Metacognition and self-regulation are important skills for successful learning and have been discussed and researched extensively in the general education literature for several decades. More recently, there has been growing interest in understanding how metacognitive and self-regulatory skills contribute to student success in the context of…
Descriptors: Metacognition, Programming, Computer Science Education, Learning Processes
Troussas, Christos; Krouska, Akrivi; Sgouropoulou, Cleo – IEEE Transactions on Education, 2021
Contribution: This article presents the instruction of computer programming using adaptive learning activities considering students' cognitive skills based on the learning theory of the Revised Bloom Taxonomy (RBT). To achieve this, the system converts students' knowledge level to fuzzy weights, and using rule-based decision making, delivers…
Descriptors: Undergraduate Students, Intelligent Tutoring Systems, Computer Science Education, Programming
Elvina, Elvina; Karnalim, Oscar; Ayub, Mewati; Wijanto, Maresha Caroline – Journal of Technology and Science Education, 2018
Numerous Program Visualization tools (PVs) have been developed for assisting novice students to understand their source code further. However, none of them are practical to be used in the context of completing programming laboratory task; students are required to keep switching between PV and programming workspace since PV's features are…
Descriptors: Visualization, Programming, Computer Science Education, Intelligent Tutoring Systems
Dawar, Deepak – Information Systems Education Journal, 2022
Learning computer programming is a challenging task for most beginners. Demotivation and learned helplessness are pretty common. A novel instructional technique that leverages the value-expectancy motivational model of student learning was conceptualized by the author to counter the lack of motivation in the introductory class. The result was a…
Descriptors: Teaching Methods, Introductory Courses, Computer Science Education, Assignments
Edwards, John; Hart, Kaden; Shrestha, Raj – Journal of Educational Data Mining, 2023
Analysis of programming process data has become popular in computing education research and educational data mining in the last decade. This type of data is quantitative, often of high temporal resolution, and it can be collected non-intrusively while the student is in a natural setting. Many levels of granularity can be obtained, such as…
Descriptors: Data Analysis, Computer Science Education, Learning Analytics, Research Methodology
Conejo, Ricardo; Barros, Beatriz; Bertoa, Manuel F. – IEEE Transactions on Learning Technologies, 2019
This paper presents an innovative method to tackle the automatic evaluation of programming assignments with an approach based on well-founded assessment theories (Classical Test Theory (CTT) and Item Response Theory (IRT)) instead of heuristic assessment as in other systems. CTT and/or IRT are used to grade the results of different items of…
Descriptors: Computer Assisted Testing, Grading, Programming, Item Response Theory
Price, Thomas W.; Dong, Yihuan; Barnes, Tiffany – International Educational Data Mining Society, 2016
Intelligent Tutoring Systems (ITSs) have shown success in the domain of programming, in part by providing customized hints and feedback to students. However, many popular novice programming environments still lack these intelligent features. This is due in part to their use of open-ended programming assignments, which are difficult to support with…
Descriptors: Intelligent Tutoring Systems, Programming, Data, Computer Science Education
Hooshyar, Danial; Binti Ahmad, Rodina; Wang, Minhong; Yousefi, Moslem; Fathi, Moein; Lim, Heuiseok – Journal of Educational Computing Research, 2018
Games with educational purposes usually follow a computer-assisted instruction concept that is predefined and rigid, offering no adaptability to each student. To overcome such problem, some ideas from Intelligent Tutoring Systems have been used in educational games such as teaching introductory programming. The objective of this study was to…
Descriptors: Intelligent Tutoring Systems, Teaching Methods, Introductory Courses, Programming
Price, Thomas; Zhi, Rui; Barnes, Tiffany – International Educational Data Mining Society, 2017
In this paper we present a novel, data-driven algorithm for generating feedback for students on open-ended programming problems. The feedback goes beyond next-step hints, annotating a student's whole program with suggested edits, including code that should be moved or reordered. We also build on existing work to design a methodology for evaluating…
Descriptors: Feedback (Response), Computer Software, Data Analysis, Programming
Du, Jie; Wimmer, Hayden; Rada, Roy – Journal of Information Technology Education: Innovations in Practice, 2016
The Hour of Code is a one-hour introduction to computer science organized by Code.org, a non-profit dedicated to expanding participation in computer science. This study investigated the impact of the Hour of Code on students' attitudes towards computer programming and their knowledge of programming. A sample of undergraduate students from two…
Descriptors: Undergraduate Students, Computer Science Education, Programming, Introductory Courses
Previous Page | Next Page »
Pages: 1 | 2