Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 5 |
Descriptor
Source
Journal of Educational and… | 5 |
Author
Andrew Gelman | 1 |
Castellano, Katherine E. | 1 |
Daniel Lee | 1 |
Dean, Nema | 1 |
Flynt, Abby | 1 |
Hao, Jiangang | 1 |
Ho, Tin Kam | 1 |
Jiqiang Guo | 1 |
Lockwood, J. R. | 1 |
McCaffrey, Daniel F. | 1 |
Schochet, Peter Z. | 1 |
More ▼ |
Publication Type
Journal Articles | 5 |
Reports - Research | 3 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
Early Childhood Education | 1 |
Elementary Education | 1 |
Elementary Secondary Education | 1 |
Kindergarten | 1 |
Primary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Schochet, Peter Z. – Journal of Educational and Behavioral Statistics, 2022
This article develops new closed-form variance expressions for power analyses for commonly used difference-in-differences (DID) and comparative interrupted time series (CITS) panel data estimators. The main contribution is to incorporate variation in treatment timing into the analysis. The power formulas also account for other key design features…
Descriptors: Comparative Analysis, Statistical Analysis, Sample Size, Measurement Techniques
Hao, Jiangang; Ho, Tin Kam – Journal of Educational and Behavioral Statistics, 2019
Machine learning is a popular topic in data analysis and modeling. Many different machine learning algorithms have been developed and implemented in a variety of programming languages over the past 20 years. In this article, we first provide an overview of machine learning and clarify its difference from statistical inference. Then, we review…
Descriptors: Artificial Intelligence, Statistical Inference, Data Analysis, Programming Languages
Lockwood, J. R.; Castellano, Katherine E.; McCaffrey, Daniel F. – Journal of Educational and Behavioral Statistics, 2022
Many states and school districts in the United States use standardized test scores to compute annual measures of student achievement progress and then use school-level averages of these growth measures for various reporting and diagnostic purposes. These aggregate growth measures can vary consequentially from year to year for the same school,…
Descriptors: Accuracy, Prediction, Programming Languages, Standardized Tests
Flynt, Abby; Dean, Nema – Journal of Educational and Behavioral Statistics, 2016
Cluster analysis is a set of statistical methods for discovering new group/class structure when exploring data sets. This article reviews the following popular libraries/commands in the R software language for applying different types of cluster analysis: from the stats library, the kmeans, and hclust functions; the mclust library; the poLCA…
Descriptors: Multivariate Analysis, Computer Software, Comparative Analysis, Programming Languages
Andrew Gelman; Daniel Lee; Jiqiang Guo – Journal of Educational and Behavioral Statistics, 2015
Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users' and developers'…
Descriptors: Programming Languages, Bayesian Statistics, Inferences, Monte Carlo Methods