NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Allison S. Theobold; Megan H. Wickstrom; Stacey A. Hancock – Journal of Statistics and Data Science Education, 2024
Despite the elevated importance of Data Science in Statistics, there exists limited research investigating how students learn the computing concepts and skills necessary for carrying out data science tasks. Computer Science educators have investigated how students debug their own code and how students reason through foreign code. While these…
Descriptors: Computer Science Education, Coding, Data Science, Statistics Education
Peer reviewed Peer reviewed
Direct linkDirect link
Amelia McNamara – Journal of Statistics and Data Science Education, 2024
When incorporating programming into a statistics course, there are many pedagogical considerations. In R, one consideration is the particular R syntax used. This article reports on a head-to-head comparison of a pair of introductory statistics labs, one conducted in the formula syntax, the other in tidyverse. Pre- and post-surveys show minimal…
Descriptors: Teaching Methods, Introductory Courses, Statistics Education, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Brian; Henke, Graham – Journal of Statistics and Data Science Education, 2021
One of the biggest hurdles of teaching data science and programming techniques to beginners is simply getting started with the technology. With multiple versions of the same coding language available (e.g., Python 2 and Python 3), various additional libraries and packages to install, as well as integrated development environments to navigate, the…
Descriptors: Computer Software, Data Analysis, Programming Languages, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Holman, Justin O.; Hacherl, Allie – Journal of Statistics and Data Science Education, 2023
It has become increasingly important for future business professionals to understand statistical computing methods as data science has gained widespread use in contemporary organizational decision processes in recent years. Used by scores of academics and practitioners in a variety of fields, Monte Carlo simulation is one of the most broadly…
Descriptors: Teaching Methods, Monte Carlo Methods, Programming Languages, Statistics Education
Peer reviewed Peer reviewed
Direct linkDirect link
Tucker, Mary C.; Shaw, Stacy T.; Son, Ji Y.; Stigler, James W. – Journal of Statistics and Data Science Education, 2023
We developed an interactive online textbook that interleaves R programming activities with text as a way to facilitate students' understanding of statistical ideas while minimizing the cognitive and emotional burden of learning programming. In this exploratory study, we characterize the attitudes and experiences of 672 undergraduate students as…
Descriptors: Statistics Education, Undergraduate Students, Programming Languages, Student Attitudes
Peer reviewed Peer reviewed
Direct linkDirect link
Savonen, Candace; Wright, Carrie; Hoffman, Ava M.; Muschelli, John; Cox, Katherine; Tan, Frederick J.; Leek, Jeffrey T. – Journal of Statistics and Data Science Education, 2023
Data science and informatics tools are developing at a blistering rate, but their users often lack the educational background or resources to efficiently apply the methods to their research. Training resources and vignettes that accompany these tools often deprecate because their maintenance is not prioritized by funding, giving teams little time…
Descriptors: Open Source Technology, Multiple Choice Tests, Summative Evaluation, Formative Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Reinhart, Alex; Genovese, Christopher R. – Journal of Statistics and Data Science Education, 2021
Traditionally, statistical computing courses have taught the syntax of a particular programming language or specific statistical computation methods. Since Nolan and Temple Lang's seminal paper, we have seen a greater emphasis on data wrangling, reproducible research, and visualization. This shift better prepares students for careers working with…
Descriptors: Computer Software, Graduate Students, Computer Science Education, Statistics Education
Peer reviewed Peer reviewed
Direct linkDirect link
Liao, Shu-Min – Journal of Statistics and Data Science Education, 2023
SCRATCH, developed by the Media Lab at MIT, is a kid-friendly visual programming language, designed to introduce programming to children and teens in a "more thinkable, more meaningful, and more social" way. Although it was initially intended for K-12 students, educators have used it for higher education as well, and found it…
Descriptors: Teaching Methods, Coding, Programming Languages, Computer Science Education