NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yuhui Jing; Chengliang Wang; Yu Chen; Haoming Wang; Teng Yu; Rustam Shadiev – Education and Information Technologies, 2024
Bibliometric mapping is widely used in educational technology research to visualize research field development (e.g. the current status and trend). However, there has been limited research examining the present state, challenges, and potential applications of bibliometric mapping techniques in the field of educational technology. In an effort to…
Descriptors: Bibliometrics, Educational Technology, Information Technology, Online Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Melissa G. Wolf; Daniel McNeish – Grantee Submission, 2023
To evaluate the fit of a confirmatory factor analysis model, researchers often rely on fit indices such as SRMR, RMSEA, and CFI. These indices are frequently compared to benchmark values of 0.08, 0.06, and 0.96, respectively, established by Hu and Bentler (1999). However, these indices are affected by model characteristics and their sensitivity to…
Descriptors: Programming Languages, Cutting Scores, Benchmarking, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Maertens, Rien; Van Petegem, Charlotte; Strijbol, Niko; Baeyens, Toon; Jacobs, Arne Carla; Dawyndt, Peter; Mesuere, Bart – Journal of Computer Assisted Learning, 2022
Background: Learning to code is increasingly embedded in secondary and higher education curricula, where solving programming exercises plays an important role in the learning process and in formative and summative assessment. Unfortunately, students admit that copying code from each other is a common practice and teachers indicate they rarely use…
Descriptors: Plagiarism, Benchmarking, Coding, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Price, Thomas W.; Dong, Yihuan; Zhi, Rui; Paaßen, Benjamin; Lytle, Nicholas; Cateté, Veronica; Barnes, Tiffany – International Journal of Artificial Intelligence in Education, 2019
In the domain of programming, a growing number of algorithms automatically generate data-driven, next-step hints that suggest how students should edit their code to resolve errors and make progress. While these hints have the potential to improve learning if done well, few evaluations have directly assessed or compared the quality of different…
Descriptors: Comparative Analysis, Programming Languages, Data Analysis, Evaluation Methods