Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 8 |
Since 2016 (last 10 years) | 21 |
Since 2006 (last 20 years) | 23 |
Descriptor
Bayesian Statistics | 23 |
Randomized Controlled Trials | 23 |
Meta Analysis | 8 |
Educational Research | 7 |
Intervention | 7 |
Statistical Analysis | 6 |
Statistical Inference | 6 |
Effect Size | 5 |
Probability | 5 |
Research Problems | 5 |
Sample Size | 5 |
More ▼ |
Source
Author
Higgins, Steve | 2 |
Kasim, Adetayo | 2 |
Peng Ding | 2 |
Singh, Akansha | 2 |
Uwimpuhwe, Germaine | 2 |
Atsushi Miyaoka | 1 |
Botelho, A. F. | 1 |
Carpenter, James R. | 1 |
Clemens, Nathan H. | 1 |
Cody, Scott | 1 |
Coux, Mickael | 1 |
More ▼ |
Publication Type
Reports - Research | 17 |
Journal Articles | 16 |
Information Analyses | 4 |
Reports - Descriptive | 2 |
Collected Works - General | 1 |
Reports - Evaluative | 1 |
Education Level
Elementary Education | 3 |
Grade 7 | 2 |
Junior High Schools | 2 |
Middle Schools | 2 |
Secondary Education | 2 |
Early Childhood Education | 1 |
Elementary Secondary Education | 1 |
Grade 1 | 1 |
Grade 6 | 1 |
Grade 8 | 1 |
Higher Education | 1 |
More ▼ |
Audience
Location
United Kingdom (England) | 2 |
Laws, Policies, & Programs
Assessments and Surveys
Gates MacGinitie Reading Tests | 1 |
Gray Oral Reading Test | 1 |
What Works Clearinghouse Rating
Qi, Hongchao; Rizopoulos, Dimitris; Rosmalen, Joost – Research Synthesis Methods, 2023
The meta-analytic-predictive (MAP) approach is a Bayesian method to incorporate historical controls in new trials that aims to increase the statistical power and reduce the required sample size. Here we investigate how to calculate the sample size of the new trial when historical data is available, and the MAP approach is used in the analysis. In…
Descriptors: Sample Size, Computation, Meta Analysis, Bayesian Statistics
Yao, Minghong; Wang, Yuning; Ren, Yan; Jia, Yulong; Zou, Kang; Li, Ling; Sun, Xin – Research Synthesis Methods, 2023
Rare events meta-analyses of randomized controlled trials (RCTs) are often underpowered because the outcomes are infrequent. Real-world evidence (RWE) from non-randomized studies may provide valuable complementary evidence about the effects of rare events, and there is growing interest in including such evidence in the decision-making process.…
Descriptors: Evidence, Meta Analysis, Randomized Controlled Trials, Decision Making
Robert B. Olsen; Larry L. Orr; Stephen H. Bell; Elizabeth Petraglia; Elena Badillo-Goicoechea; Atsushi Miyaoka; Elizabeth A. Stuart – Journal of Research on Educational Effectiveness, 2024
Multi-site randomized controlled trials (RCTs) provide unbiased estimates of the average impact in the study sample. However, their ability to accurately predict the impact for individual sites outside the study sample, to inform local policy decisions, is largely unknown. To extend prior research on this question, we analyzed six multi-site RCTs…
Descriptors: Accuracy, Predictor Variables, Randomized Controlled Trials, Regression (Statistics)
Winnie Wing-Yee Tse; Hok Chio Lai – Society for Research on Educational Effectiveness, 2021
Background: Power analysis and sample size planning are key components in designing cluster randomized trials (CRTs), a common study design to test treatment effect by randomizing clusters or groups of individuals. Sample size determination in two-level CRTs requires knowledge of more than one design parameter, such as the effect size and the…
Descriptors: Sample Size, Bayesian Statistics, Randomized Controlled Trials, Research Design
Uwimpuhwe, Germaine; Singh, Akansha; Higgins, Steve; Kasim, Adetayo – International Journal of Research & Method in Education, 2021
Educational researchers advocate the use of an effect size and its confidence interval to assess the effectiveness of interventions instead of relying on a p-value, which has been blamed for lack of reproducibility of research findings and the misuse of statistics. The aim of this study is to provide a framework, which can provide direct evidence…
Descriptors: Educational Research, Randomized Controlled Trials, Bayesian Statistics, Effect Size
Held, Leonhard; Matthews, Robert; Ott, Manuela; Pawel, Samuel – Research Synthesis Methods, 2022
It is now widely accepted that the standard inferential toolkit used by the scientific research community--null-hypothesis significance testing (NHST)--is not fit for purpose. Yet despite the threat posed to the scientific enterprise, there is no agreement concerning alternative approaches for evidence assessment. This lack of consensus reflects…
Descriptors: Bayesian Statistics, Statistical Inference, Hypothesis Testing, Credibility
Piepho, Hans-Peter; Madden, Laurence V. – Research Synthesis Methods, 2022
Network meta-analysis is a popular method to synthesize the information obtained in a systematic review of studies (e.g., randomized clinical trials) involving subsets of multiple treatments of interest. The dominant method of analysis employs within-study information on treatment contrasts and integrates this over a network of studies. One…
Descriptors: Medical Research, Meta Analysis, Networks, Drug Therapy
Peng Ding; Luke W. Miratrix – Grantee Submission, 2019
For binary experimental data, we discuss randomization-based inferential procedures that do not need to invoke any modeling assumptions. We also introduce methods for likelihood and Bayesian inference based solely on the physical randomization without any hypothetical super population assumptions about the potential outcomes. These estimators have…
Descriptors: Causal Models, Statistical Inference, Randomized Controlled Trials, Bayesian Statistics
Liang, Xinya; Kamata, Akihito; Li, Ji – Educational and Psychological Measurement, 2020
One important issue in Bayesian estimation is the determination of an effective informative prior. In hierarchical Bayes models, the uncertainty of hyperparameters in a prior can be further modeled via their own priors, namely, hyper priors. This study introduces a framework to construct hyper priors for both the mean and the variance…
Descriptors: Bayesian Statistics, Randomized Controlled Trials, Effect Size, Sampling
Lortie-Forgues, Hugues; Inglis, Matthew – Educational Researcher, 2019
In this response, we first show that Simpson's proposed analysis answers a different and less interesting question than ours. We then justify the choice of prior for our Bayes factors calculations, but we also demonstrate that the substantive conclusions of our article are not substantially affected by varying this choice.
Descriptors: Randomized Controlled Trials, Bayesian Statistics, Educational Research, Program Evaluation
Uhlmann, Lorenz; Jensen, Katrin; Kieser, Meinhard – Research Synthesis Methods, 2017
Network meta-analysis is becoming a common approach to combine direct and indirect comparisons of several treatment arms. In recent research, there have been various developments and extensions of the standard methodology. Simultaneously, cluster randomized trials are experiencing an increased popularity, especially in the field of health services…
Descriptors: Bayesian Statistics, Network Analysis, Meta Analysis, Randomized Controlled Trials
Simpson, Adrian – Educational Researcher, 2019
A recent paper uses Bayes factors to argue a large minority of rigorous, large-scale education RCTs are "uninformative." The definition of "uninformative" depends on the authors' hypothesis choices for calculating Bayes factors. These arguably overadjust for effect size inflation and involve a fixed prior distribution,…
Descriptors: Randomized Controlled Trials, Bayesian Statistics, Educational Research, Program Evaluation
Finucane, Mariel McKenzie; Martinez, Ignacio; Cody, Scott – American Journal of Evaluation, 2018
In the coming years, public programs will capture even more and richer data than they do now, including data from web-based tools used by participants in employment services, from tablet-based educational curricula, and from electronic health records for Medicaid beneficiaries. Program evaluators seeking to take full advantage of these data…
Descriptors: Bayesian Statistics, Data Analysis, Program Evaluation, Randomized Controlled Trials
Gagnon-Bartsch, J. A.; Sales, A. C.; Wu, E.; Botelho, A. F.; Erickson, J. A.; Miratrix, L. W.; Heffernan, N. T. – Grantee Submission, 2019
Randomized controlled trials (RCTs) admit unconfounded design-based inference--randomization largely justifies the assumptions underlying statistical effect estimates--but often have limited sample sizes. However, researchers may have access to big observational data on covariates and outcomes from RCT non-participants. For example, data from A/B…
Descriptors: Randomized Controlled Trials, Educational Research, Prediction, Algorithms
Uwimpuhwe, Germaine; Singh, Akansha; Higgins, Steve; Coux, Mickael; Xiao, ZhiMin; Shkedy, Ziv; Kasim, Adetayo – Journal of Experimental Education, 2022
Educational stakeholders are keen to know the magnitude and importance of different interventions. However, the way evidence is communicated to support understanding of the effectiveness of an intervention is controversial. Typically studies in education have used the standardised mean difference as a measure of the impact of interventions. This…
Descriptors: Program Effectiveness, Intervention, Multivariate Analysis, Bayesian Statistics
Previous Page | Next Page ยป
Pages: 1 | 2