NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 43 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Beth Chance; Karen McGaughey; Sophia Chung; Alex Goodman; Soma Roy; Nathan Tintle – Journal of Statistics and Data Science Education, 2025
"Simulation-based inference" is often considered a pedagogical strategy for helping students develop inferential reasoning, for example, giving them a visual and concrete reference for deciding whether the observed statistic is unlikely to happen by chance alone when the null hypothesis is true. In this article, we highlight for teachers…
Descriptors: Simulation, Sampling, Randomized Controlled Trials, Hypothesis Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Huibin Zhang; Zuchao Shen; Walter L. Leite – Journal of Experimental Education, 2025
Cluster-randomized trials have been widely used to evaluate the treatment effects of interventions on student outcomes. When interventions are implemented by teachers, researchers need to account for the nested structure in schools (i.e., students are nested within teachers nested within schools). Schools usually have a very limited number of…
Descriptors: Sample Size, Multivariate Analysis, Randomized Controlled Trials, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Timothy Lycurgus; Daniel Almirall – Society for Research on Educational Effectiveness, 2024
Background: Education scientists are increasingly interested in constructing interventions that are adaptive over time to suit the evolving needs of students, classrooms, or schools. Such "adaptive interventions" (also referred to as dynamic treatment regimens or dynamic instructional regimes) determine which treatment should be offered…
Descriptors: Educational Research, Research Design, Randomized Controlled Trials, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Reagan Mozer; Luke Miratrix – Society for Research on Educational Effectiveness, 2023
Background: For randomized trials that use text as an outcome, traditional approaches for assessing treatment impact require each document first be manually coded for constructs of interest by trained human raters. These hand-coded scores are then used as a measured outcome for an impact analysis, with the average scores of the treatment group…
Descriptors: Artificial Intelligence, Coding, Randomized Controlled Trials, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Charlotte Z. Mann; Adam C. Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2025
Combining observational and experimental data for causal inference can improve treatment effect estimation. However, many observational data sets cannot be released due to data privacy considerations, so one researcher may not have access to both experimental and observational data. Nonetheless, a small amount of risk of disclosing sensitive…
Descriptors: Causal Models, Statistical Analysis, Privacy, Risk
Peer reviewed Peer reviewed
Direct linkDirect link
Glaman, Ryan; Chen, Qi; Henson, Robin K. – Journal of Experimental Education, 2022
This study compared three approaches for handling a fourth level of nesting when analyzing cluster-randomized trial (CRT) data. Although CRT data analyses may include repeated measures, individual, and cluster levels, there may be an additional fourth level that is typically ignored. This study examined the impact of ignoring this fourth level,…
Descriptors: Randomized Controlled Trials, Hierarchical Linear Modeling, Data Analysis, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Ilja Cornelisz; Chris van Klaveren – npj Science of Learning, 2022
Longitudinal randomized controlled trials generally assign individuals randomly to interventions at baseline and then evaluate how differential average treatment effects evolve over time. This study shows that longitudinal settings could benefit from "Recurrent Individual Treatment Assignment" ("RITA") instead, particularly in…
Descriptors: Longitudinal Studies, Randomized Controlled Trials, Intervention, Assignments
Peer reviewed Peer reviewed
Direct linkDirect link
Kyle Cox; Ben Kelcey; Hannah Luce – Journal of Experimental Education, 2024
Comprehensive evaluation of treatment effects is aided by considerations for moderated effects. In educational research, the combination of natural hierarchical structures and prevalence of group-administered or shared facilitator treatments often produces three-level partially nested data structures. Literature details planning strategies for a…
Descriptors: Randomized Controlled Trials, Monte Carlo Methods, Hierarchical Linear Modeling, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Yao, Minghong; Wang, Yuning; Ren, Yan; Jia, Yulong; Zou, Kang; Li, Ling; Sun, Xin – Research Synthesis Methods, 2023
Rare events meta-analyses of randomized controlled trials (RCTs) are often underpowered because the outcomes are infrequent. Real-world evidence (RWE) from non-randomized studies may provide valuable complementary evidence about the effects of rare events, and there is growing interest in including such evidence in the decision-making process.…
Descriptors: Evidence, Meta Analysis, Randomized Controlled Trials, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Kristin Porter; Luke Miratrix; Kristen Hunter – Society for Research on Educational Effectiveness, 2021
Background: Researchers are often interested in testing the effectiveness of an intervention on multiple outcomes, for multiple subgroups, at multiple points in time, or across multiple treatment groups. The resulting multiplicity of statistical hypothesis tests can lead to spurious findings of effects. Multiple testing procedures (MTPs)…
Descriptors: Statistical Analysis, Hypothesis Testing, Computer Software, Randomized Controlled Trials
Peer reviewed Peer reviewed
Direct linkDirect link
Proctor, Tanja; Zimmermann, Samuel; Seide, Svenja; Kieser, Meinhard – Research Synthesis Methods, 2022
During drug development, a biomarker is sometimes identified as separating a patient population into those with more and those with less benefit from evaluated treatments. Consequently, later studies might be targeted, while earlier ones are performed in mixed patient populations. This poses a challenge in evidence synthesis, especially if only…
Descriptors: Comparative Analysis, Meta Analysis, Patients, Medical Research
Lydia Bradford – ProQuest LLC, 2024
In randomized control trials (RCT), the recent focus has shifted to how an intervention yields positive results on its intended outcome. This aligns with the recent push of implementation science in healthcare (Bauer et al., 2015) but goes beyond this. RCTs have moved to evaluating the theoretical framing of the intervention as well as differing…
Descriptors: Hierarchical Linear Modeling, Mediation Theory, Randomized Controlled Trials, Research Design
Pashley, Nicole E.; Miratrix, Luke W. – Journal of Educational and Behavioral Statistics, 2021
Evaluating blocked randomized experiments from a potential outcomes perspective has two primary branches of work. The first focuses on larger blocks, with multiple treatment and control units in each block. The second focuses on matched pairs, with a single treatment and control unit in each block. These literatures not only provide different…
Descriptors: Causal Models, Statistical Inference, Research Methodology, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Liang, Xinya; Kamata, Akihito; Li, Ji – Educational and Psychological Measurement, 2020
One important issue in Bayesian estimation is the determination of an effective informative prior. In hierarchical Bayes models, the uncertainty of hyperparameters in a prior can be further modeled via their own priors, namely, hyper priors. This study introduces a framework to construct hyper priors for both the mean and the variance…
Descriptors: Bayesian Statistics, Randomized Controlled Trials, Effect Size, Sampling
Joshua B. Gilbert; James S. Kim; Luke W. Miratrix – Annenberg Institute for School Reform at Brown University, 2024
Longitudinal models of individual growth typically emphasize between-person predictors of change but ignore how growth may vary "within" persons because each person contributes only one point at each time to the model. In contrast, modeling growth with multi-item assessments allows evaluation of how relative item performance may shift…
Descriptors: Vocabulary Development, Item Response Theory, Test Items, Student Development
Previous Page | Next Page ยป
Pages: 1  |  2  |  3