NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sang-June Park; Youjae Yi – Journal of Educational and Behavioral Statistics, 2024
Previous research explicates ordinal and disordinal interactions through the concept of the "crossover point." This point is determined via simple regression models of a focal predictor at specific moderator values and signifies the intersection of these models. An interaction effect is labeled as disordinal (or ordinal) when the…
Descriptors: Interaction, Predictor Variables, Causal Models, Mathematical Models
Peer reviewed Peer reviewed
Direct linkDirect link
Francesco Innocenti; Math J. J. M. Candel; Frans E. S. Tan; Gerard J. P. van Breukelen – Journal of Educational and Behavioral Statistics, 2024
Normative studies are needed to obtain norms for comparing individuals with the reference population on relevant clinical or educational measures. Norms can be obtained in an efficient way by regressing the test score on relevant predictors, such as age and sex. When several measures are normed with the same sample, a multivariate regression-based…
Descriptors: Sample Size, Multivariate Analysis, Error of Measurement, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Luo, Wen; Azen, Razia – Journal of Educational and Behavioral Statistics, 2013
Dominance analysis (DA) is a method used to evaluate the relative importance of predictors that was originally proposed for linear regression models. This article proposes an extension of DA that allows researchers to determine the relative importance of predictors in hierarchical linear models (HLM). Commonly used measures of model adequacy in…
Descriptors: Predictor Variables, Hierarchical Linear Modeling, Statistical Analysis, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Choi, Kilchan; Seltzer, Michael – Journal of Educational and Behavioral Statistics, 2010
In studies of change in education and numerous other fields, interest often centers on how differences in the status of individuals at the start of a period of substantive interest relate to differences in subsequent change. In this article, the authors present a fully Bayesian approach to estimating three-level Hierarchical Models in which latent…
Descriptors: Simulation, Computation, Models, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Bauer, Daniel J.; Cai, Li – Journal of Educational and Behavioral Statistics, 2009
Applications of multilevel models have increased markedly during the past decade. In incorporating lower-level predictors into multilevel models, a key interest is often whether or not a given predictor requires a random slope, that is, whether the effect of the predictor varies over upper-level units. If the variance of a random slope…
Descriptors: Models, Predictor Variables, Statistical Analysis, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Azen, Razia; Traxel, Nicole – Journal of Educational and Behavioral Statistics, 2009
This article proposes an extension of dominance analysis that allows researchers to determine the relative importance of predictors in logistic regression models. Criteria for choosing logistic regression R[superscript 2] analogues were determined and measures were selected that can be used to perform dominance analysis in logistic regression. A…
Descriptors: Regression (Statistics), Predictor Variables, Measurement, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Allen, Jeff; Le, Huy – Journal of Educational and Behavioral Statistics, 2008
Users of logistic regression models often need to describe the overall predictive strength, or effect size, of the model's predictors. Analogs of R[superscript 2] have been developed, but none of these measures are interpretable on the same scale as effects of individual predictors. Furthermore, R[superscript 2] analogs are not invariant to the…
Descriptors: Regression (Statistics), Effect Size, Measurement, Models
Peer reviewed Peer reviewed
Rindskopf, David – Journal of Educational and Behavioral Statistics, 2002
Asserts that, in principle, an analyst should be satisfied with infinite estimates slope in logistic regression because it indicates that a predictor is perfect. Using simple approaches, hypothesis tests may be performed and confidence intervals calculated even when a slope is infinite. Some functions of parameters that are infinite are still…
Descriptors: Estimation (Mathematics), Predictor Variables, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Miyazaki, Yasuo; Maier, Kimberly S. – Journal of Educational and Behavioral Statistics, 2005
In hierarchical linear models we often find that group indicator variables at the cluster level are significant predictors for the regression slopes. When this is the case, the average relationship between the outcome and a key independent variable are different from group to group. In these settings, a question such as "what range of the…
Descriptors: Statistical Analysis, Predictor Variables, Multivariate Analysis, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Dana, Jason; Dawes, Robyn M. – Journal of Educational and Behavioral Statistics, 2004
Some simple, nonoptimized coefficients (e.g., correlation weights, equal weights) were pitted against regression in extensive prediction competitions. After drawing calibration samples from large supersets of real and synthetic data, the researchers observed which set of sample-derived coefficients made the best predictions when applied back to…
Descriptors: Prediction, Social Sciences, Computation, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Zwick, Rebecca; Sklar, Jeffrey C. – Journal of Educational and Behavioral Statistics, 2005
Cox (1972) proposed a discrete-time survival model that is somewhat analogous to the proportional hazards model for continuous time. Efron (1988) showed that this model can be estimated using ordinary logistic regression software, and Singer and Willett (1993) provided a detailed illustration of a particularly flexible form of the model that…
Descriptors: Error of Measurement, Regression (Statistics), Computer Software, Predictor Variables