NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Journal of Educational and…95
Laws, Policies, & Programs
No Child Left Behind Act 20011
What Works Clearinghouse Rating
Showing 1 to 15 of 95 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
William R. Dardick; Jeffrey R. Harring – Journal of Educational and Behavioral Statistics, 2025
Simulation studies are the basic tools of quantitative methodologists used to obtain empirical solutions to statistical problems that may be impossible to derive through direct mathematical computations. The successful execution of many simulation studies relies on the accurate generation of correlated multivariate data that adhere to a particular…
Descriptors: Statistics, Statistics Education, Problem Solving, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Sang-June Park; Youjae Yi – Journal of Educational and Behavioral Statistics, 2024
Previous research explicates ordinal and disordinal interactions through the concept of the "crossover point." This point is determined via simple regression models of a focal predictor at specific moderator values and signifies the intersection of these models. An interaction effect is labeled as disordinal (or ordinal) when the…
Descriptors: Interaction, Predictor Variables, Causal Models, Mathematical Models
Peer reviewed Peer reviewed
Direct linkDirect link
Zachary K. Collier; Minji Kong; Olushola Soyoye; Kamal Chawla; Ann M. Aviles; Yasser Payne – Journal of Educational and Behavioral Statistics, 2024
Asymmetric Likert-type items in research studies can present several challenges in data analysis, particularly concerning missing data. These items are often characterized by a skewed scaling, where either there is no neutral response option or an unequal number of possible positive and negative responses. The use of conventional techniques, such…
Descriptors: Likert Scales, Test Items, Item Analysis, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Francesco Innocenti; Math J. J. M. Candel; Frans E. S. Tan; Gerard J. P. van Breukelen – Journal of Educational and Behavioral Statistics, 2024
Normative studies are needed to obtain norms for comparing individuals with the reference population on relevant clinical or educational measures. Norms can be obtained in an efficient way by regressing the test score on relevant predictors, such as age and sex. When several measures are normed with the same sample, a multivariate regression-based…
Descriptors: Sample Size, Multivariate Analysis, Error of Measurement, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Weimeng; Liu, Yang; Liu, Hongyun – Journal of Educational and Behavioral Statistics, 2022
Differential item functioning (DIF) occurs when the probability of endorsing an item differs across groups for individuals with the same latent trait level. The presence of DIF items may jeopardize the validity of an instrument; therefore, it is crucial to identify DIF items in routine operations of educational assessment. While DIF detection…
Descriptors: Test Bias, Test Items, Equated Scores, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Sinharay, Sandip – Journal of Educational and Behavioral Statistics, 2022
Takers of educational tests often receive proficiency levels instead of or in addition to scaled scores. For example, proficiency levels are reported for the Advanced Placement (AP®) and U.S. Medical Licensing examinations. Technical difficulties and other unforeseen events occasionally lead to missing item scores and hence to incomplete data on…
Descriptors: Computation, Data Analysis, Educational Testing, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Ernest C. Davenport Jr.; Mark L. Davison; Kyungin Park – Journal of Educational and Behavioral Statistics, 2024
The following study shows how reparameterizations and constraints of the general linear model can serve to parse quantitative and qualitative aspects of predictors. We demonstrate three different approaches. The study uses data from the High School Longitudinal Study of 2009 on mathematics course-taking and achievement as an example. Results show…
Descriptors: High School Students, Mathematics Instruction, Mathematics Achievement, Grade 9
Peer reviewed Peer reviewed
Direct linkDirect link
Colombi, Roberto; Giordano, Sabrina; Tutz, Gerhard – Journal of Educational and Behavioral Statistics, 2021
A mixture of logit models is proposed that discriminates between responses to rating questions that are affected by a tendency to prefer middle or extremes of the scale regardless of the content of the item (response styles) and purely content-driven preferences. Explanatory variables are used to characterize the content-driven way of answering as…
Descriptors: Rating Scales, Response Style (Tests), Test Items, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Andersson, Björn; Xin, Tao – Journal of Educational and Behavioral Statistics, 2021
The estimation of high-dimensional latent regression item response theory (IRT) models is difficult because of the need to approximate integrals in the likelihood function. Proposed solutions in the literature include using stochastic approximations, adaptive quadrature, and Laplace approximations. We propose using a second-order Laplace…
Descriptors: Item Response Theory, Computation, Regression (Statistics), Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Youmi Suk – Journal of Educational and Behavioral Statistics, 2024
Machine learning (ML) methods for causal inference have gained popularity due to their flexibility to predict the outcome model and the propensity score. In this article, we provide a within-group approach for ML-based causal inference methods in order to robustly estimate average treatment effects in multilevel studies when there is cluster-level…
Descriptors: Artificial Intelligence, Causal Models, Statistical Inference, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Suk, Youmi; Steiner, Peter M.; Kim, Jee-Seon; Kang, Hyunseung – Journal of Educational and Behavioral Statistics, 2022
Regression discontinuity (RD) designs are commonly used for program evaluation with continuous treatment assignment variables. But in practice, treatment assignment is frequently based on ordinal variables. In this study, we propose an RD design with an ordinal running variable to assess the effects of extended time accommodations (ETA) for…
Descriptors: Regression (Statistics), Program Evaluation, Research Design, English Language Learners
Peer reviewed Peer reviewed
Direct linkDirect link
Pang, Bo; Nijkamp, Erik; Wu, Ying Nian – Journal of Educational and Behavioral Statistics, 2020
This review covers the core concepts and design decisions of TensorFlow. TensorFlow, originally created by researchers at Google, is the most popular one among the plethora of deep learning libraries. In the field of deep learning, neural networks have achieved tremendous success and gained wide popularity in various areas. This family of models…
Descriptors: Artificial Intelligence, Regression (Statistics), Models, Classification
Shear, Benjamin R.; Reardon, Sean F. – Journal of Educational and Behavioral Statistics, 2021
This article describes an extension to the use of heteroskedastic ordered probit (HETOP) models to estimate latent distributional parameters from grouped, ordered-categorical data by pooling across multiple waves of data. We illustrate the method with aggregate proficiency data reporting the number of students in schools or districts scoring in…
Descriptors: Statistical Analysis, Computation, Regression (Statistics), Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Yang; Wang, Xiaojing – Journal of Educational and Behavioral Statistics, 2020
Parametric methods, such as autoregressive models or latent growth modeling, are usually inflexible to model the dependence and nonlinear effects among the changes of latent traits whenever the time gap is irregular and the recorded time points are individually varying. Often in practice, the growth trend of latent traits is subject to certain…
Descriptors: Bayesian Statistics, Nonparametric Statistics, Regression (Statistics), Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Kleinke, Kristian – Journal of Educational and Behavioral Statistics, 2017
Predictive mean matching (PMM) is a standard technique for the imputation of incomplete continuous data. PMM imputes an actual observed value, whose predicted value is among a set of k = 1 values (the so-called donor pool), which are closest to the one predicted for the missing case. PMM is usually better able to preserve the original distribution…
Descriptors: Statistical Analysis, Statistical Distributions, Robustness (Statistics), Sample Size
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7