Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 15 |
Descriptor
Bayesian Statistics | 15 |
Hierarchical Linear Modeling | 15 |
Regression (Statistics) | 15 |
Statistical Analysis | 7 |
Computation | 5 |
Academic Achievement | 4 |
Data Analysis | 4 |
Scores | 4 |
Statistical Inference | 4 |
Computer Software | 3 |
Educational Research | 3 |
More ▼ |
Source
Grantee Submission | 6 |
Journal of Educational and… | 3 |
Educational and Psychological… | 2 |
Applied Measurement in… | 1 |
Journal of Advanced Academics | 1 |
Journal of Learning Analytics | 1 |
Journal on School Educational… | 1 |
Author
Chung, Yeojin | 2 |
Craig K. Enders | 2 |
Dorie, Vincent | 2 |
Enders, Craig K. | 2 |
Gelman, Andrew | 2 |
Keller, Brian T. | 2 |
Liu, Jingchen | 2 |
Rabe-Hesketh, Sophia | 2 |
Akhmedjanova, Diana | 1 |
Allen, Jeff | 1 |
Andrew Gelman | 1 |
More ▼ |
Publication Type
Reports - Research | 13 |
Journal Articles | 10 |
Reports - Descriptive | 2 |
Information Analyses | 1 |
Education Level
High Schools | 3 |
Secondary Education | 3 |
Elementary Education | 2 |
Middle Schools | 2 |
Early Childhood Education | 1 |
Grade 10 | 1 |
Grade 11 | 1 |
Grade 12 | 1 |
Grade 3 | 1 |
Grade 5 | 1 |
Grade 9 | 1 |
More ▼ |
Audience
Location
Indiana | 1 |
Laws, Policies, & Programs
No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
Indiana Statewide Testing for… | 1 |
Iowa Tests of Basic Skills | 1 |
What Works Clearinghouse Rating
Brian T. Keller; Craig K. Enders – Grantee Submission, 2023
A growing body of literature has focused on missing data methods that factorize the joint distribution into a part representing the analysis model of interest and a part representing the distributions of the incomplete predictors. Relatively little is known about the utility of this method for multilevel models with interactive effects. This study…
Descriptors: Data Analysis, Hierarchical Linear Modeling, Monte Carlo Methods, Bias
Craig K. Enders – Grantee Submission, 2023
The year 2022 is the 20th anniversary of Joseph Schafer and John Graham's paper titled "Missing data: Our view of the state of the art," currently the most highly cited paper in the history of "Psychological Methods." Much has changed since 2002, as missing data methodologies have continually evolved and improved; the range of…
Descriptors: Data, Research, Theories, Regression (Statistics)
Enders, Craig K.; Du, Han; Keller, Brian T. – Grantee Submission, 2019
Despite the broad appeal of missing data handling approaches that assume a missing at random (MAR) mechanism (e.g., multiple imputation and maximum likelihood estimation), some very common analysis models in the behavioral science literature are known to cause bias-inducing problems for these approaches. Regression models with incomplete…
Descriptors: Hierarchical Linear Modeling, Regression (Statistics), Predictor Variables, Bayesian Statistics
Moeyaert, Mariola; Akhmedjanova, Diana; Ferron, John; Beretvas, S. Natasha; Van den Noortgate, Wim – Grantee Submission, 2020
The methodology of single-case experimental designs (SCED) has been expanding its efforts toward rigorous design tactics to address a variety of research questions related to intervention effectiveness. Effect size indicators appropriate to quantify the magnitude and the direction of interventions have been recommended and intensively studied for…
Descriptors: Effect Size, Research Methodology, Research Design, Hierarchical Linear Modeling
Enders, Craig K.; Keller, Brian T.; Levy, Roy – Grantee Submission, 2018
Specialized imputation routines for multilevel data are widely available in software packages, but these methods are generally not equipped to handle a wide range of complexities that are typical of behavioral science data. In particular, existing imputation schemes differ in their ability to handle random slopes, categorical variables,…
Descriptors: Hierarchical Linear Modeling, Behavioral Science Research, Computer Software, Bayesian Statistics
Choi, Kilchan; Kim, Jinok – Journal of Educational and Behavioral Statistics, 2019
This article proposes a latent variable regression four-level hierarchical model (LVR-HM4) that uses a fully Bayesian approach. Using multisite multiple-cohort longitudinal data, for example, annual assessment scores over grades for students who are nested within cohorts within schools, the LVR-HM4 attempts to simultaneously model two types of…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Longitudinal Studies, Cohort Analysis
Chung, Yeojin; Gelman, Andrew; Rabe-Hesketh, Sophia; Liu, Jingchen; Dorie, Vincent – Journal of Educational and Behavioral Statistics, 2015
When fitting hierarchical regression models, maximum likelihood (ML) estimation has computational (and, for some users, philosophical) advantages compared to full Bayesian inference, but when the number of groups is small, estimates of the covariance matrix (S) of group-level varying coefficients are often degenerate. One can do better, even from…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Bayesian Statistics, Statistical Inference
Chung, Yeojin; Gelman, Andrew; Rabe-Hesketh, Sophia; Liu, Jingchen; Dorie, Vincent – Grantee Submission, 2015
When fitting hierarchical regression models, maximum likelihood (ML) estimation has computational (and, for some users, philosophical) advantages compared to full Bayesian inference, but when the number of groups is small, estimates of the covariance matrix [sigma] of group-level varying coefficients are often degenerate. One can do better, even…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Bayesian Statistics, Statistical Inference
Andrew Gelman; Daniel Lee; Jiqiang Guo – Journal of Educational and Behavioral Statistics, 2015
Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users' and developers'…
Descriptors: Programming Languages, Bayesian Statistics, Inferences, Monte Carlo Methods
Allen, Jeff – Applied Measurement in Education, 2017
Using a sample of schools testing annually in grades 9-11 with a vertically linked series of assessments, a latent growth curve model is used to model test scores with student intercepts and slopes nested within school. Missed assessments can occur because of student mobility, student dropout, absenteeism, and other reasons. Missing data…
Descriptors: Achievement Gains, Academic Achievement, Growth Models, Scores
Liu, Min; Lin, Tsung-I – Educational and Psychological Measurement, 2014
A challenge associated with traditional mixture regression models (MRMs), which rest on the assumption of normally distributed errors, is determining the number of unobserved groups. Specifically, even slight deviations from normality can lead to the detection of spurious classes. The current work aims to (a) examine how sensitive the commonly…
Descriptors: Regression (Statistics), Evaluation Methods, Indexes, Models
Hodges, Jaret; McIntosh, Jason; Gentry, Marcia – Journal of Advanced Academics, 2017
High-potential students from low-income families are at an academic disadvantage compared with their more affluent peers. To address this issue, researchers have suggested novel approaches to mitigate gaps in student performance, including out-of-school enrichment programs. Longitudinal mixed effects modeling was used to analyze the growth of…
Descriptors: After School Programs, Enrichment Activities, Academic Achievement, High Achievement
Gray, Geraldine; McGuinness, Colm; Owende, Philip; Carthy, Aiden – Journal of Learning Analytics, 2014
Increasing college participation rates, and diversity in student population, is posing a challenge to colleges in their attempts to facilitate learners achieve their full academic potential. Learning analytics is an evolving discipline with capability for educational data analysis that could enable better understanding of learning process, and…
Descriptors: Psychometrics, Data Analysis, Academic Achievement, Postsecondary Education
Wang, Qiu; Diemer, Matthew A.; Maier, Kimberly S. – Educational and Psychological Measurement, 2013
This study integrated Bayesian hierarchical modeling and receiver operating characteristic analysis (BROCA) to evaluate how interest strength (IS) and interest differentiation (ID) predicted low–socioeconomic status (SES) youth's interest-major congruence (IMC). Using large-scale Kuder Career Search online-assessment data, this study fit three…
Descriptors: Bayesian Statistics, Socioeconomic Status, Student Interests, Gender Differences
Vaughn, Brandon K. – Journal on School Educational Technology, 2008
This study considers the importance of contextual effects on the quality of assessments on item bias and differential item functioning (DIF) in measurement. Often, in educational studies, students are clustered in teachers or schools, and the clusters could impact psychometric issues yet are largely ignored by traditional item analyses. A…
Descriptors: Test Bias, Educational Assessment, Educational Quality, Context Effect