NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 24 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Beechey, Timothy – Journal of Speech, Language, and Hearing Research, 2023
Purpose: This article provides a tutorial introduction to ordinal pattern analysis, a statistical analysis method designed to quantify the extent to which hypotheses of relative change across experimental conditions match observed data at the level of individuals. This method may be a useful addition to familiar parametric statistical methods…
Descriptors: Hypothesis Testing, Multivariate Analysis, Data Analysis, Statistical Inference
Keller, Brian T. – Grantee Submission, 2021
In this paper, we provide an introduction to the factored regression framework. This modeling framework applies the rules of probability to break up or "factor" a complex joint distribution into a product of conditional regression models. Using this framework, we can easily specify the complex multivariate models that missing data…
Descriptors: Regression (Statistics), Models, Multivariate Analysis, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Jaki, Thomas; Kim, Minjung; Lamont, Andrea; George, Melissa; Chang, Chi; Feaster, Daniel; Van Horn, M. Lee – Educational and Psychological Measurement, 2019
Regression mixture models are a statistical approach used for estimating heterogeneity in effects. This study investigates the impact of sample size on regression mixture's ability to produce "stable" results. Monte Carlo simulations and analysis of resamples from an application data set were used to illustrate the types of problems that…
Descriptors: Sample Size, Computation, Regression (Statistics), Reliability
Daniel McNeish; Laura M. Stapleton; Rebecca D. Silverman – Grantee Submission, 2017
In psychology and the behavioral sciences generally, the use of the hierarchical linear model (HLM) and its extensions for discrete outcomes are popular methods for modeling clustered data. HLM and its discrete outcome extensions, however, are certainly not the only methods available to model clustered data. Although other methods exist and are…
Descriptors: Hierarchical Linear Modeling, Social Science Research, Multivariate Analysis, Error Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
Borgna, Georgianna; Walton, Dawn; Convertino, Carol; Marschark, Marc; Trussell, Jessica – Deafness & Education International, 2018
Various studies have examined possible loci of deaf learners' documented challenges with regard to reading, usually focusing on language-related factors. Deaf students also frequently struggle in mathematics and science, but fewer studies have examined possible reasons for those difficulties. The present study examined numerical and non-numerical…
Descriptors: Numeracy, Deafness, College Students, Mathematical Aptitude
Peer reviewed Peer reviewed
Direct linkDirect link
Schulz, Andreas – Mathematical Thinking and Learning: An International Journal, 2018
Theoretical analysis of whole number-based calculation strategies and digit-based algorithms for multi-digit multiplication and division reveals that strategy use includes two kinds of reasoning: reasoning about the relations between numbers and reasoning about the relations between operations. In contrast, algorithms aim to reduce the necessary…
Descriptors: Computation, Mathematics Instruction, Multiplication, Arithmetic
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, W. Holmes – Journal of Experimental Education, 2016
Multivariate analysis of variance (MANOVA) is widely used in educational research to compare means on multiple dependent variables across groups. Researchers faced with the problem of missing data often use multiple imputation of values in place of the missing observations. This study compares the performance of 2 methods for combining p values in…
Descriptors: Multivariate Analysis, Educational Research, Error of Measurement, Research Problems
Peer reviewed Peer reviewed
Direct linkDirect link
Wong, Vivian C.; Steiner, Peter M.; Cook, Thomas D. – Journal of Educational and Behavioral Statistics, 2013
In a traditional regression-discontinuity design (RDD), units are assigned to treatment on the basis of a cutoff score and a continuous assignment variable. The treatment effect is measured at a single cutoff location along the assignment variable. This article introduces the multivariate regression-discontinuity design (MRDD), where multiple…
Descriptors: Computation, Research Design, Regression (Statistics), Multivariate Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Moraveji, Behjat; Jafarian, Koorosh – International Journal of Education and Literacy Studies, 2014
The aim of this paper is to provide an introduction of new imputation algorithms for estimating missing values from official statistics in larger data sets of data pre-processing, or outliers. The goal is to propose a new algorithm called IRMI (iterative robust model-based imputation). This algorithm is able to deal with all challenges like…
Descriptors: Mathematics, Computation, Robustness (Statistics), Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Pampaka, Maria; Hutcheson, Graeme; Williams, Julian – International Journal of Research & Method in Education, 2016
Missing data is endemic in much educational research. However, practices such as step-wise regression common in the educational research literature have been shown to be dangerous when significant data are missing, and multiple imputation (MI) is generally recommended by statisticians. In this paper, we provide a review of these advances and their…
Descriptors: Data Analysis, Statistical Inference, Error of Measurement, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Wetzel, Eunike; Xu, Xueli; von Davier, Matthias – Educational and Psychological Measurement, 2015
In large-scale educational surveys, a latent regression model is used to compensate for the shortage of cognitive information. Conventionally, the covariates in the latent regression model are principal components extracted from background data. This operational method has several important disadvantages, such as the handling of missing data and…
Descriptors: Surveys, Regression (Statistics), Models, Research Methodology
Salman, Raied – ProQuest LLC, 2012
The dissertation deals with clustering algorithms and transforming regression problems into classification problems. The main contributions of the dissertation are twofold; first, to improve (speed up) the clustering algorithms and second, to develop a strict learning environment for solving regression problems as classification tasks by using…
Descriptors: Classification, Mathematics, Regression (Statistics), Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Tolar, Tammy D.; Fuchs, Lynn; Fletcher, Jack M.; Fuchs, Douglas; Hamlett, Carol L. – Journal of Learning Disabilities, 2016
Three cohorts of third-grade students (N = 813) were evaluated on achievement, cognitive abilities, and behavioral attention according to contrasting research traditions in defining math learning disability (LD) status: low achievement versus extremely low achievement and IQ-achievement discrepant versus strictly low-achieving LD. We use methods…
Descriptors: Grade 3, Elementary School Students, Mathematics Instruction, Learning Disabilities
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Haberman, Shelby J. – ETS Research Report Series, 2013
A general program for item-response analysis is described that uses the stabilized Newton-Raphson algorithm. This program is written to be compliant with Fortran 2003 standards and is sufficiently general to handle independent variables, multidimensional ability parameters, and matrix sampling. The ability variables may be either polytomous or…
Descriptors: Predictor Variables, Mathematics, Item Response Theory, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Cox, Bradley E.; McIntosh, Kadian; Reason, Robert D.; Terenzini, Patrick T. – Review of Higher Education, 2014
Nearly all quantitative analyses in higher education draw from incomplete datasets-a common problem with no universal solution. In the first part of this paper, we explain why missing data matter and outline the advantages and disadvantages of six common methods for handling missing data. Next, we analyze real-world data from 5,905 students across…
Descriptors: Data Analysis, Statistical Inference, Research Problems, Computation
Previous Page | Next Page ยป
Pages: 1  |  2