Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 5 |
Descriptor
Causal Models | 5 |
Data Analysis | 5 |
Regression (Statistics) | 5 |
Comparative Analysis | 3 |
Algorithms | 2 |
Artificial Intelligence | 2 |
Bayesian Statistics | 2 |
Computation | 2 |
Evaluation Methods | 2 |
Inferences | 2 |
Pretests Posttests | 2 |
More ▼ |
Author
George Perrett | 2 |
Vincent Dorie | 2 |
Benjamin Goodrich | 1 |
Cook, Thomas D. | 1 |
Jennifer Hill | 1 |
Jennifer L. Hill | 1 |
Steiner, Peter M. | 1 |
Stuart, Elizabeth A. | 1 |
York, Richard | 1 |
Publication Type
Journal Articles | 4 |
Reports - Research | 3 |
Reports - Descriptive | 2 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Jennifer Hill; George Perrett; Vincent Dorie – Grantee Submission, 2023
Estimation of causal effects requires making comparisons across groups of observations exposed and not exposed to a a treatment or cause (intervention, program, drug, etc). To interpret differences between groups causally we need to ensure that they have been constructed in such a way that the comparisons are "fair." This can be…
Descriptors: Causal Models, Statistical Inference, Artificial Intelligence, Data Analysis
Vincent Dorie; George Perrett; Jennifer L. Hill; Benjamin Goodrich – Grantee Submission, 2022
A wide range of machine-learning-based approaches have been developed in the past decade, increasing our ability to accurately model nonlinear and nonadditive response surfaces. This has improved performance for inferential tasks such as estimating average treatment effects in situations where standard parametric models may not fit the data well.…
Descriptors: Statistical Inference, Causal Models, Artificial Intelligence, Data Analysis
York, Richard – International Journal of Social Research Methodology, 2018
A common motivation for adding control variables to statistical models is to reduce the potential for spurious findings when analyzing non-experimental data and to thereby allow for more reliable causal inferences. However, as I show here, unless "all" potential confounding factors are included in an analysis (which is unlikely to be…
Descriptors: Inferences, Control Groups, Correlation, Experimental Groups
Cook, Thomas D.; Steiner, Peter M. – Psychological Methods, 2010
In this article, we note the many ontological, epistemological, and methodological similarities between how Campbell and Rubin conceptualize causation. We then explore 3 differences in their written emphases about individual case matching in observational studies. We contend that (a) Campbell places greater emphasis than Rubin on the special role…
Descriptors: Research Methodology, Pretests Posttests, Data Analysis, Evaluation Methods
Stuart, Elizabeth A. – Educational Researcher, 2007
Education researchers, practitioners, and policymakers alike are committed to identifying interventions that teach students more effectively. Increased emphasis on evaluation and accountability has increased desire for sound evaluations of these interventions; and at the same time, school-level data have become increasingly available. This article…
Descriptors: Research Methodology, Computation, Causal Models, Intervention