NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Does not meet standards1
Showing 1 to 15 of 24 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hiromichi Hagihara; Mikako Ishibashi; Yusuke Moriguchi; Yuta Shinya – Developmental Science, 2024
Scale errors are intriguing phenomena in which a child tries to perform an object-specific action on a tiny object. Several viewpoints explaining the developmental mechanisms underlying scale errors exist; however, there is no unified account of how different factors interact and affect scale errors, and the statistical approaches used in the…
Descriptors: Measurement, Error of Measurement, Meta Analysis, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Rüttenauer, Tobias – Sociological Methods & Research, 2022
Spatial regression models provide the opportunity to analyze spatial data and spatial processes. Yet, several model specifications can be used, all assuming different types of spatial dependence. This study summarizes the most commonly used spatial regression models and offers a comparison of their performance by using Monte Carlo experiments. In…
Descriptors: Models, Monte Carlo Methods, Social Science Research, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Selvi, Hüseyin; Alici, Devrim; Uzun, Nezaket Bilge – Asian Journal of Education and Training, 2020
This study aims to comparatively examine the resultant findings by testing the measurement invariance with structural equation modeling in cases where the missing data is handled using the expectation-maximization (EM), regression imputation, and mean substitution methods in the complete data matrix and the 5% missing data matrix that is randomly…
Descriptors: Error of Measurement, Structural Equation Models, Attitude Measures, Student Attitudes
Peer reviewed Peer reviewed
Direct linkDirect link
da Silva, M. A. Salgueiro; Seixas, T. M. – Physics Teacher, 2017
Measuring one physical quantity as a function of another often requires making some choices prior to the measurement process. Two of these choices are: the data range where measurements should focus and the number (n) of data points to acquire in the chosen data range. Here, we consider data range as the interval of variation of the independent…
Descriptors: Physics, Regression (Statistics), Measurement, Measurement Techniques
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pek, Jolynn; Wong, Octavia; Wong, C. M. – Practical Assessment, Research & Evaluation, 2017
Data transformations have been promoted as a popular and easy-to-implement remedy to address the assumption of normally distributed errors (in the population) in linear regression. However, the application of data transformations introduces non-ignorable complexities which should be fully appreciated before their implementation. This paper adds to…
Descriptors: Data Analysis, Regression (Statistics), Statistical Inference, Data Interpretation
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Francis L. – Journal of Experimental Education, 2018
Studies analyzing clustered data sets using both multilevel models (MLMs) and ordinary least squares (OLS) regression have generally concluded that resulting point estimates, but not the standard errors, are comparable with each other. However, the accuracy of the estimates of OLS models is important to consider, as several alternative techniques…
Descriptors: Hierarchical Linear Modeling, Least Squares Statistics, Regression (Statistics), Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, W. Holmes – Journal of Experimental Education, 2016
Multivariate analysis of variance (MANOVA) is widely used in educational research to compare means on multiple dependent variables across groups. Researchers faced with the problem of missing data often use multiple imputation of values in place of the missing observations. This study compares the performance of 2 methods for combining p values in…
Descriptors: Multivariate Analysis, Educational Research, Error of Measurement, Research Problems
Peer reviewed Peer reviewed
Direct linkDirect link
Pinder, Jonathan P. – Decision Sciences Journal of Innovative Education, 2014
Business analytics courses, such as marketing research, data mining, forecasting, and advanced financial modeling, have substantial predictive modeling components. The predictive modeling in these courses requires students to estimate and test many linear regressions. As a result, false positive variable selection ("type I errors") is…
Descriptors: Data Collection, Data Analysis, Regression (Statistics), Predictive Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
James Cowan; Dan Goldhaber – Review of Higher Education, 2015
We study a popular dual enrollment program in Washington State, "Running Start" using a new administrative database that links high school and postsecondary data. Conditional on prior high school performance, we find that students participating in Running Start are more likely to attend any college but less likely to attend four-year…
Descriptors: Dual Enrollment, College Preparation, College Bound Students, Educational Attainment
James Cowan; Dan Goldhaber – Grantee Submission, 2015
We study a popular dual enrollment program in Washington State, "Running Start" using a new administrative database that links high school and postsecondary data. Conditional on prior high school performance, we find that students participating in Running Start are more likely to attend any college but less likely to attend four-year…
Descriptors: Dual Enrollment, College Preparation, College Bound Students, Educational Attainment
Peer reviewed Peer reviewed
Direct linkDirect link
Pampaka, Maria; Hutcheson, Graeme; Williams, Julian – International Journal of Research & Method in Education, 2016
Missing data is endemic in much educational research. However, practices such as step-wise regression common in the educational research literature have been shown to be dangerous when significant data are missing, and multiple imputation (MI) is generally recommended by statisticians. In this paper, we provide a review of these advances and their…
Descriptors: Data Analysis, Statistical Inference, Error of Measurement, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Cox, Bradley E.; McIntosh, Kadian; Reason, Robert D.; Terenzini, Patrick T. – Review of Higher Education, 2014
Nearly all quantitative analyses in higher education draw from incomplete datasets-a common problem with no universal solution. In the first part of this paper, we explain why missing data matter and outline the advantages and disadvantages of six common methods for handling missing data. Next, we analyze real-world data from 5,905 students across…
Descriptors: Data Analysis, Statistical Inference, Research Problems, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, W. Holmes – Educational and Psychological Measurement, 2011
Missing information is a ubiquitous aspect of data analysis, including responses to items on cognitive and affective instruments. Although the broader statistical literature describes missing data methods, relatively little work has focused on this issue in the context of differential item functioning (DIF) detection. Such prior research has…
Descriptors: Test Bias, Data Analysis, Item Response Theory, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Bouhlila, Donia Smaali; Sellaouti, Fethi – Large-scale Assessments in Education, 2013
In this paper, we document a study that involved applying a multiple imputation technique with chained equations to data drawn from the 2007 iteration of the TIMSS database. More precisely, we imputed missing variables contained in the student background datafile for Tunisia (one of the TIMSS 2007 participating countries), by using Van Buuren,…
Descriptors: Databases, Student Characteristics, Error of Measurement, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Osborne, Jason W. – Practical Assessment, Research & Evaluation, 2011
Large surveys often use probability sampling in order to obtain representative samples, and these data sets are valuable tools for researchers in all areas of science. Yet many researchers are not formally prepared to appropriately utilize these resources. Indeed, users of one popular dataset were generally found "not" to have modeled…
Descriptors: Best Practices, Sampling, Sample Size, Data Analysis
Previous Page | Next Page »
Pages: 1  |  2