Publication Date
In 2025 | 1 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 12 |
Descriptor
Causal Models | 13 |
Error of Measurement | 13 |
Regression (Statistics) | 13 |
Computation | 6 |
Research Design | 6 |
Research Methodology | 6 |
Scores | 4 |
Statistical Analysis | 4 |
Statistical Bias | 4 |
Equations (Mathematics) | 3 |
Intervals | 3 |
More ▼ |
Source
Author
Cook, Thomas D. | 2 |
Andrew Forney | 1 |
Bartolucci, Francesco | 1 |
Bloom, Howard S. | 1 |
Carlos Cinelli | 1 |
Gelman, Andrew | 1 |
Goeun Lee | 1 |
Imbens, Guido | 1 |
Jin-young Choi | 1 |
Judea Pearl | 1 |
Kisbu-Sakarya, Yasemin | 1 |
More ▼ |
Publication Type
Journal Articles | 7 |
Reports - Research | 6 |
Reports - Evaluative | 3 |
Reports - Descriptive | 2 |
Books | 1 |
Dissertations/Theses -… | 1 |
Guides - Non-Classroom | 1 |
Numerical/Quantitative Data | 1 |
Education Level
Elementary Education | 1 |
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Italy | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Wechsler Intelligence Scale… | 1 |
What Works Clearinghouse Rating
Carlos Cinelli; Andrew Forney; Judea Pearl – Sociological Methods & Research, 2024
Many students of statistics and econometrics express frustration with the way a problem known as "bad control" is treated in the traditional literature. The issue arises when the addition of a variable to a regression equation produces an unintended discrepancy between the regression coefficient and the effect that the coefficient is…
Descriptors: Regression (Statistics), Robustness (Statistics), Error of Measurement, Testing Problems
Myoung-jae Lee; Goeun Lee; Jin-young Choi – Sociological Methods & Research, 2025
A linear model is often used to find the effect of a binary treatment D on a noncontinuous outcome Y with covariates X. Particularly, a binary Y gives the popular "linear probability model (LPM)," but the linear model is untenable if X contains a continuous regressor. This raises the question: what kind of treatment effect does the…
Descriptors: Probability, Least Squares Statistics, Regression (Statistics), Causal Models
Yuejin Zhou; Wenwu Wang; Tao Hu; Tiejun Tong; Zhonghua Liu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Causal mediation analysis is a popular approach for investigating whether the effect of an exposure on an outcome is through a mediator to better understand the underlying causal mechanism. In recent literature, mediation analysis with multiple mediators has been proposed for continuous and dichotomous outcomes. In contrast, methods for mediation…
Descriptors: Regression (Statistics), Causal Models, Evaluation Methods, Vignettes
Bartolucci, Francesco; Pennoni, Fulvia; Vittadini, Giorgio – Journal of Educational and Behavioral Statistics, 2016
We extend to the longitudinal setting a latent class approach that was recently introduced by Lanza, Coffman, and Xu to estimate the causal effect of a treatment. The proposed approach enables an evaluation of multiple treatment effects on subpopulations of individuals from a dynamic perspective, as it relies on a latent Markov (LM) model that is…
Descriptors: Causal Models, Markov Processes, Longitudinal Studies, Probability
Tang, Yang; Cook, Thomas D.; Kisbu-Sakarya, Yasemin – Society for Research on Educational Effectiveness, 2015
Regression discontinuity design (RD) has been widely used to produce reliable causal estimates. Researchers have validated the accuracy of RD design using within study comparisons (Cook, Shadish & Wong, 2008; Cook & Steiner, 2010; Shadish et al, 2011). Within study comparisons examines the validity of a quasi-experiment by comparing its…
Descriptors: Pretests Posttests, Statistical Bias, Accuracy, Regression (Statistics)
Gelman, Andrew; Imbens, Guido – National Bureau of Economic Research, 2014
It is common in regression discontinuity analysis to control for high order (third, fourth, or higher) polynomials of the forcing variable. We argue that estimators for causal effects based on such methods can be misleading, and we recommend researchers do not use them, and instead use estimators based on local linear or quadratic polynomials or…
Descriptors: Regression (Statistics), Mathematical Models, Causal Models, Research Methodology
Porter, Kristin E.; Reardon, Sean F.; Unlu, Fatih; Bloom, Howard S.; Robinson-Cimpian, Joseph P. – MDRC, 2014
A valuable extension of the single-rating regression discontinuity design (RDD) is a multiple-rating RDD (MRRDD). To date, four main methods have been used to estimate average treatment effects at the multiple treatment frontiers of an MRRDD: the "surface" method, the "frontier" method, the "binding-score" method, and…
Descriptors: Regression (Statistics), Research Design, Quasiexperimental Design, Research Methodology
Lo, Yun-Jia – ProQuest LLC, 2012
In educational research, a randomized controlled trial is the best design to eliminate potential selection bias in a sample to support valid causal inferences, but it is not always possible in educational research because of financial, ethical, and logistical constrains. One alternative solution is use of the propensity score (PS) methods.…
Descriptors: Educational Research, Probability, Scores, Research Methodology
Wing, Coady; Cook, Thomas D. – Journal of Policy Analysis and Management, 2013
The sharp regression discontinuity design (RDD) has three key weaknesses compared to the randomized clinical trial (RCT). It has lower statistical power, it is more dependent on statistical modeling assumptions, and its treatment effect estimates are limited to the narrow subpopulation of cases immediately around the cutoff, which is rarely of…
Descriptors: Regression (Statistics), Research Design, Statistical Analysis, Research Problems
Schluchter, Mark D. – Multivariate Behavioral Research, 2008
In behavioral research, interest is often in examining the degree to which the effect of an independent variable X on an outcome Y is mediated by an intermediary or mediator variable M. This article illustrates how generalized estimating equations (GEE) modeling can be used to estimate the indirect or mediated effect, defined as the amount by…
Descriptors: Intervals, Predictor Variables, Equations (Mathematics), Computation
Rosenthal, James A. – Springer, 2011
Written by a social worker for social work students, this is a nuts and bolts guide to statistics that presents complex calculations and concepts in clear, easy-to-understand language. It includes numerous examples, data sets, and issues that students will encounter in social work practice. The first section introduces basic concepts and terms to…
Descriptors: Statistics, Data Interpretation, Social Work, Social Science Research
Schochet, Peter Z. – National Center for Education Evaluation and Regional Assistance, 2009
This paper examines the estimation of two-stage clustered RCT designs in education research using the Neyman causal inference framework that underlies experiments. The key distinction between the considered causal models is whether potential treatment and control group outcomes are considered to be fixed for the study population (the…
Descriptors: Control Groups, Causal Models, Statistical Significance, Computation

Neale, Michael C.; And Others – Multivariate Behavioral Research, 1994
In studies of relatives, conventional multiple regression may not be appropriate because observations are not independent. Obtaining estimates of regression coefficients and correct standard errors from these populations through a structural equation modeling framework is discussed and illustrated with data from twins. (SLD)
Descriptors: Analysis of Covariance, Causal Models, Data Collection, Error of Measurement