Publication Date
In 2025 | 0 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 10 |
Descriptor
Maximum Likelihood Statistics | 12 |
Regression (Statistics) | 12 |
Statistical Inference | 12 |
Bayesian Statistics | 7 |
Computation | 5 |
Educational Research | 4 |
Statistical Analysis | 4 |
Error of Measurement | 3 |
Hierarchical Linear Modeling | 3 |
Structural Equation Models | 3 |
Goodness of Fit | 2 |
More ▼ |
Source
Journal of Educational and… | 3 |
Grantee Submission | 2 |
Educational Psychologist | 1 |
Educational and Psychological… | 1 |
Psychometrika | 1 |
Review of Higher Education | 1 |
Sociological Methods &… | 1 |
Structural Equation Modeling:… | 1 |
Author
Chung, Yeojin | 2 |
Dorie, Vincent | 2 |
Gelman, Andrew | 2 |
Liu, Jingchen | 2 |
Rabe-Hesketh, Sophia | 2 |
Boomsma, Anne | 1 |
Castellano, Katherine E. | 1 |
Cox, Bradley E. | 1 |
Craig K. Enders | 1 |
Daniel Kasper | 1 |
David Kaplan | 1 |
More ▼ |
Publication Type
Journal Articles | 10 |
Reports - Research | 7 |
Reports - Evaluative | 3 |
Reports - Descriptive | 2 |
Speeches/Meeting Papers | 1 |
Education Level
Elementary Education | 2 |
Elementary Secondary Education | 1 |
Grade 4 | 1 |
Grade 8 | 1 |
Higher Education | 1 |
Intermediate Grades | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Postsecondary Education | 1 |
Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 1 |
Progress in International… | 1 |
Trends in International… | 1 |
What Works Clearinghouse Rating
Kjorte Harra; David Kaplan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The present work focuses on the performance of two types of shrinkage priors--the horseshoe prior and the recently developed regularized horseshoe prior--in the context of inducing sparsity in path analysis and growth curve models. Prior research has shown that these horseshoe priors induce sparsity by at least as much as the "gold…
Descriptors: Structural Equation Models, Bayesian Statistics, Regression (Statistics), Statistical Inference
Youmi Suk – Journal of Educational and Behavioral Statistics, 2024
Machine learning (ML) methods for causal inference have gained popularity due to their flexibility to predict the outcome model and the propensity score. In this article, we provide a within-group approach for ML-based causal inference methods in order to robustly estimate average treatment effects in multilevel studies when there is cluster-level…
Descriptors: Artificial Intelligence, Causal Models, Statistical Inference, Maximum Likelihood Statistics
Craig K. Enders – Grantee Submission, 2023
The year 2022 is the 20th anniversary of Joseph Schafer and John Graham's paper titled "Missing data: Our view of the state of the art," currently the most highly cited paper in the history of "Psychological Methods." Much has changed since 2002, as missing data methodologies have continually evolved and improved; the range of…
Descriptors: Data, Research, Theories, Regression (Statistics)
Daniel Kasper; Katrin Schulz-Heidorf; Knut Schwippert – Sociological Methods & Research, 2024
In this article, we extend Liao's test for across-group comparisons of the fixed effects from the generalized linear model to the fixed and random effects of the generalized linear mixed model (GLMM). Using as our basis the Wald statistic, we developed an asymptotic test statistic for across-group comparisons of these effects. The test can be…
Descriptors: Models, Achievement Tests, Foreign Countries, International Assessment
Devlieger, Ines; Talloen, Wouter; Rosseel, Yves – Educational and Psychological Measurement, 2019
Factor score regression (FSR) is a popular alternative for structural equation modeling. Naively applying FSR induces bias for the estimators of the regression coefficients. Croon proposed a method to correct for this bias. Next to estimating effects without bias, interest often lies in inference of regression coefficients or in the fit of the…
Descriptors: Regression (Statistics), Computation, Goodness of Fit, Statistical Inference
Lockwood, J. R.; Castellano, Katherine E.; Shear, Benjamin R. – Journal of Educational and Behavioral Statistics, 2018
This article proposes a flexible extension of the Fay--Herriot model for making inferences from coarsened, group-level achievement data, for example, school-level data consisting of numbers of students falling into various ordinal performance categories. The model builds on the heteroskedastic ordered probit (HETOP) framework advocated by Reardon,…
Descriptors: Bayesian Statistics, Mathematical Models, Statistical Inference, Computation
Chung, Yeojin; Gelman, Andrew; Rabe-Hesketh, Sophia; Liu, Jingchen; Dorie, Vincent – Journal of Educational and Behavioral Statistics, 2015
When fitting hierarchical regression models, maximum likelihood (ML) estimation has computational (and, for some users, philosophical) advantages compared to full Bayesian inference, but when the number of groups is small, estimates of the covariance matrix (S) of group-level varying coefficients are often degenerate. One can do better, even from…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Bayesian Statistics, Statistical Inference
Chung, Yeojin; Gelman, Andrew; Rabe-Hesketh, Sophia; Liu, Jingchen; Dorie, Vincent – Grantee Submission, 2015
When fitting hierarchical regression models, maximum likelihood (ML) estimation has computational (and, for some users, philosophical) advantages compared to full Bayesian inference, but when the number of groups is small, estimates of the covariance matrix [sigma] of group-level varying coefficients are often degenerate. One can do better, even…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Bayesian Statistics, Statistical Inference
Levy, Roy – Educational Psychologist, 2016
In this article, I provide a conceptually oriented overview of Bayesian approaches to statistical inference and contrast them with frequentist approaches that currently dominate conventional practice in educational research. The features and advantages of Bayesian approaches are illustrated with examples spanning several statistical modeling…
Descriptors: Bayesian Statistics, Models, Educational Research, Innovation
Cox, Bradley E.; McIntosh, Kadian; Reason, Robert D.; Terenzini, Patrick T. – Review of Higher Education, 2014
Nearly all quantitative analyses in higher education draw from incomplete datasets-a common problem with no universal solution. In the first part of this paper, we explain why missing data matter and outline the advantages and disadvantages of six common methods for handling missing data. Next, we analyze real-world data from 5,905 students across…
Descriptors: Data Analysis, Statistical Inference, Research Problems, Computation

Hoijtink, Herbert; Boomsma, Anne – Psychometrika, 1996
The quality of approximations to first- and second-order moments based on latent ability estimates is discussed. The ability estimates are based on the Rasch or the two-parameter logistic model, and true score theory is used to account for the fact that the basic quantities are estimates. (SLD)
Descriptors: Ability, Bayesian Statistics, Estimation (Mathematics), Item Response Theory
Olson, Jeffery E. – 1992
Often, all of the variables in a model are latent, random, or subject to measurement error, or there is not an obvious dependent variable. When any of these conditions exist, an appropriate method for estimating the linear relationships among the variables is Least Principal Components Analysis. Least Principal Components are robust, consistent,…
Descriptors: Error of Measurement, Factor Analysis, Goodness of Fit, Mathematical Models