NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hiromichi Hagihara; Mikako Ishibashi; Yusuke Moriguchi; Yuta Shinya – Developmental Science, 2024
Scale errors are intriguing phenomena in which a child tries to perform an object-specific action on a tiny object. Several viewpoints explaining the developmental mechanisms underlying scale errors exist; however, there is no unified account of how different factors interact and affect scale errors, and the statistical approaches used in the…
Descriptors: Measurement, Error of Measurement, Meta Analysis, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Noma, Hisashi; Hamura, Yasuyuki; Gosho, Masahiko; Furukawa, Toshi A. – Research Synthesis Methods, 2023
Network meta-analysis has been an essential methodology of systematic reviews for comparative effectiveness research. The restricted maximum likelihood (REML) method is one of the current standard inference methods for multivariate, contrast-based meta-analysis models, but recent studies have revealed the resultant confidence intervals of average…
Descriptors: Network Analysis, Meta Analysis, Regression (Statistics), Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Van Lissa, Caspar J.; van Erp, Sara; Clapper, Eli-Boaz – Research Synthesis Methods, 2023
When meta-analyzing heterogeneous bodies of literature, meta-regression can be used to account for potentially relevant between-studies differences. A key challenge is that the number of candidate moderators is often high relative to the number of studies. This introduces risks of overfitting, spurious results, and model non-convergence. To…
Descriptors: Bayesian Statistics, Regression (Statistics), Maximum Likelihood Statistics, Meta Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Fernández-Castilla, Belén; Declercq, Lies; Jamshidi, Laleh; Beretvas, S. Natasha; Onghena, Patrick; Van den Noortgate, Wim – Journal of Experimental Education, 2021
This study explores the performance of classical methods for detecting publication bias--namely, Egger's regression test, Funnel Plot test, Begg's Rank Correlation and Trim and Fill method--in meta-analysis of studies that report multiple effects. Publication bias, outcome reporting bias, and a combination of these were generated. Egger's…
Descriptors: Statistical Bias, Meta Analysis, Publications, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Joshi, Megha; Pustejovsky, James E.; Beretvas, S. Natasha – Research Synthesis Methods, 2022
The most common and well-known meta-regression models work under the assumption that there is only one effect size estimate per study and that the estimates are independent. However, meta-analytic reviews of social science research often include multiple effect size estimates per primary study, leading to dependence in the estimates. Some…
Descriptors: Meta Analysis, Regression (Statistics), Models, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Pustejovsky, James E.; Rodgers, Melissa A. – Research Synthesis Methods, 2019
Publication bias and other forms of outcome reporting bias are critical threats to the validity of findings from research syntheses. A variety of methods have been proposed for detecting selective outcome reporting in a collection of effect size estimates, including several methods based on assessment of asymmetry of funnel plots, such as the…
Descriptors: Effect Size, Regression (Statistics), Statistical Analysis, Error of Measurement
Jamshidi, Laleh; Declercq, Lies; Fernández-Castilla, Belén; Ferron, John M.; Moeyaert, Mariola; Beretvas, S. Natasha; Van den Noortgate, Wim – Grantee Submission, 2020
The focus of the current study is on handling the dependence among multiple regression coefficients representing the treatment effects when meta-analyzing data from single-case experimental studies. We compare the results when applying three different multilevel meta-analytic models (i.e., a univariate multilevel model avoiding the dependence, a…
Descriptors: Multivariate Analysis, Hierarchical Linear Modeling, Meta Analysis, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
López-López, José Antonio; Van den Noortgate, Wim; Tanner-Smith, Emily E.; Wilson, Sandra Jo; Lipsey, Mark W. – Research Synthesis Methods, 2017
Dependent effect sizes are ubiquitous in meta-analysis. Using Monte Carlo simulation, we compared the performance of 2 methods for meta-regression with dependent effect sizes--robust variance estimation (RVE) and 3-level modeling--with the standard meta-analytic method for independent effect sizes. We further compared bias-reduced linearization…
Descriptors: Effect Size, Regression (Statistics), Meta Analysis, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Moeyaert, Mariola; Ugille, Maaike; Ferron, John M.; Onghena, Patrick; Heyvaert, Mieke; Beretvas, S. Natasha; Van den Noortgate, Wim – School Psychology Quarterly, 2015
The purpose of this study is to illustrate the multilevel meta-analysis of results from single-subject experimental designs of different types, including AB phase designs, multiple-baseline designs, ABAB reversal designs, and alternating treatment designs. Current methodological work on the meta-analysis of single-subject experimental designs…
Descriptors: Intervention, Multivariate Analysis, Meta Analysis, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Stanley, T. D.; Doucouliagos, Hristos – Research Synthesis Methods, 2014
Publication selection bias is a serious challenge to the integrity of all empirical sciences. We derive meta-regression approximations to reduce this bias. Our approach employs Taylor polynomial approximations to the conditional mean of a truncated distribution. A quadratic approximation without a linear term, precision-effect estimate with…
Descriptors: Regression (Statistics), Bias, Algebra, Mathematical Formulas
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tipton, Elizabeth – Society for Research on Educational Effectiveness, 2014
Replication studies allow for making comparisons and generalizations regarding the effectiveness of an intervention across different populations, versions of a treatment, settings and contexts, and outcomes. One method for making these comparisons across many replication studies is through the use of meta-analysis. A recent innovation in…
Descriptors: Replication (Evaluation), Robustness (Statistics), Meta Analysis, Regression (Statistics)