Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 10 |
Descriptor
Regression (Statistics) | 13 |
Research Problems | 13 |
Statistical Inference | 13 |
Computation | 6 |
Educational Research | 6 |
Error of Measurement | 5 |
Research Design | 5 |
Models | 4 |
Research Methodology | 4 |
Causal Models | 3 |
Data Analysis | 3 |
More ▼ |
Source
Author
Avi Feller | 1 |
Coughlin, Mary Ann | 1 |
Cox, Bradley E. | 1 |
David Bruns-Smith | 1 |
Deke, John | 1 |
Elizabeth L. Ogburn | 1 |
Gelman, Andrew | 1 |
Hughes, Katherine L. | 1 |
Hutcheson, Graeme | 1 |
Imbens, Guido | 1 |
Kautz, Tim | 1 |
More ▼ |
Publication Type
Reports - Research | 9 |
Journal Articles | 5 |
Reports - Evaluative | 3 |
Books | 1 |
Guides - Non-Classroom | 1 |
Numerical/Quantitative Data | 1 |
Speeches/Meeting Papers | 1 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 2 |
Postsecondary Education | 2 |
High Schools | 1 |
Two Year Colleges | 1 |
Audience
Researchers | 3 |
Location
Delaware | 1 |
United Kingdom (England) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
David Bruns-Smith; Oliver Dukes; Avi Feller; Elizabeth L. Ogburn – Grantee Submission, 2024
We provide a novel characterization of augmented balancing weights, also known as automatic debiased machine learning (AutoDML). These popular "doubly robust" or "de-biased machine learning estimators" combine outcome modeling with balancing weights -- weights that achieve covariate balance directly in lieu of estimating and…
Descriptors: Regression (Statistics), Weighted Scores, Data Analysis, Robustness (Statistics)
Weicong Lyu; Peter M. Steiner – Society for Research on Educational Effectiveness, 2021
Doubly robust (DR) estimators that combine regression adjustments and inverse probability weighting (IPW) are widely used in causal inference with observational data because they are claimed to be consistent when either the outcome or the treatment selection model is correctly specified (Scharfstein et al., 1999). This property of "double…
Descriptors: Robustness (Statistics), Causal Models, Statistical Inference, Regression (Statistics)

Kenneth A. Frank; Qinyun Lin; Spiro J. Maroulis – Grantee Submission, 2024
In the complex world of educational policy, causal inferences will be debated. As we review non-experimental designs in educational policy, we focus on how to clarify and focus the terms of debate. We begin by presenting the potential outcomes/counterfactual framework and then describe approximations to the counterfactual generated from the…
Descriptors: Causal Models, Statistical Inference, Observation, Educational Policy
Hughes, Katherine L.; Miller, Trey; Reese, Kelly – Grantee Submission, 2021
This report from the Career and Technical Education (CTE) Research Network Lead team provides final results from an evaluability assessment of CTE programs that feasibly could be evaluated using a rigorous experimental design. Evaluability assessments (also called feasibility studies) are used in education and other fields, such as international…
Descriptors: Program Evaluation, Vocational Education, Evaluation Methods, Educational Research
Showalter, Daniel A.; Mullet, Luke B. – Mid-Western Educational Researcher, 2017
Selection bias is a persistent, and often hidden, problem in educational research. It is the primary obstacle standing in between increasingly available large education datasets and the ability to make valid causal inferences to inform policymaking, research, and practice (Stuart, 2010). This article provides an accessible discussion on the…
Descriptors: Educational Research, Selection Criteria, Selection Tools, Bias
Deke, John; Wei, Thomas; Kautz, Tim – National Center for Education Evaluation and Regional Assistance, 2017
Evaluators of education interventions are increasingly designing studies to detect impacts much smaller than the 0.20 standard deviations that Cohen (1988) characterized as "small." While the need to detect smaller impacts is based on compelling arguments that such impacts are substantively meaningful, the drive to detect smaller impacts…
Descriptors: Intervention, Educational Research, Research Problems, Statistical Bias
Levy, Roy – Educational Psychologist, 2016
In this article, I provide a conceptually oriented overview of Bayesian approaches to statistical inference and contrast them with frequentist approaches that currently dominate conventional practice in educational research. The features and advantages of Bayesian approaches are illustrated with examples spanning several statistical modeling…
Descriptors: Bayesian Statistics, Models, Educational Research, Innovation
Gelman, Andrew; Imbens, Guido – National Bureau of Economic Research, 2014
It is common in regression discontinuity analysis to control for high order (third, fourth, or higher) polynomials of the forcing variable. We argue that estimators for causal effects based on such methods can be misleading, and we recommend researchers do not use them, and instead use estimators based on local linear or quadratic polynomials or…
Descriptors: Regression (Statistics), Mathematical Models, Causal Models, Research Methodology
Pampaka, Maria; Hutcheson, Graeme; Williams, Julian – International Journal of Research & Method in Education, 2016
Missing data is endemic in much educational research. However, practices such as step-wise regression common in the educational research literature have been shown to be dangerous when significant data are missing, and multiple imputation (MI) is generally recommended by statisticians. In this paper, we provide a review of these advances and their…
Descriptors: Data Analysis, Statistical Inference, Error of Measurement, Computation
Cox, Bradley E.; McIntosh, Kadian; Reason, Robert D.; Terenzini, Patrick T. – Review of Higher Education, 2014
Nearly all quantitative analyses in higher education draw from incomplete datasets-a common problem with no universal solution. In the first part of this paper, we explain why missing data matter and outline the advantages and disadvantages of six common methods for handling missing data. Next, we analyze real-world data from 5,905 students across…
Descriptors: Data Analysis, Statistical Inference, Research Problems, Computation

O'Grady, Kevin E.; Medoff, Deborah R. – Multivariate Behavioral Research, 1988
Limitations of dummy coding and nonsense coding as methods of coding categorical variables for use as predictors in multiple regression analysis are discussed. The combination of these approaches often yields estimates and tests of significance that are not intended by researchers for inclusion in their models. (SLD)
Descriptors: Multiple Regression Analysis, Predictive Measurement, Regression (Statistics), Research Problems
Sandler, Andrew B. – 1987
Statistical significance is misused in educational and psychological research when it is applied as a method to establish the reliability of research results. Other techniques have been developed which can be correctly utilized to establish the generalizability of findings. Methods that do provide such estimates are known as invariance or…
Descriptors: Analysis of Covariance, Analysis of Variance, Correlation, Discriminant Analysis
Coughlin, Mary Ann; Pagano, Marian – 1997
This monograph covers the theory, application, and interpretation of both descriptive and inferential statistical techniques in institutional research. Each chapter opens with a hypothetical case study, which is used to illustrate the application of one or more statistical procedures to typical research questions. Chapter 2 covers the comparison…
Descriptors: Analysis of Covariance, Analysis of Variance, Chi Square, Correlation