NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Miratrix, Luke W.; Weiss, Michael J.; Henderson, Brit – Journal of Research on Educational Effectiveness, 2021
Researchers face many choices when conducting large-scale multisite individually randomized control trials. One of the most common quantities of interest in multisite RCTs is the overall average effect. Even this quantity is non-trivial to define and estimate. The researcher can target the average effect across individuals or sites. Furthermore,…
Descriptors: Computation, Randomized Controlled Trials, Error of Measurement, Regression (Statistics)
Jamshidi, Laleh; Declercq, Lies; Fernández-Castilla, Belén; Ferron, John M.; Moeyaert, Mariola; Beretvas, S. Natasha; Van den Noortgate, Wim – Grantee Submission, 2020
The focus of the current study is on handling the dependence among multiple regression coefficients representing the treatment effects when meta-analyzing data from single-case experimental studies. We compare the results when applying three different multilevel meta-analytic models (i.e., a univariate multilevel model avoiding the dependence, a…
Descriptors: Multivariate Analysis, Hierarchical Linear Modeling, Meta Analysis, Regression (Statistics)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Enders, Craig K.; Keller, Brian T.; Levy, Roy – Grantee Submission, 2018
Specialized imputation routines for multilevel data are widely available in software packages, but these methods are generally not equipped to handle a wide range of complexities that are typical of behavioral science data. In particular, existing imputation schemes differ in their ability to handle random slopes, categorical variables,…
Descriptors: Hierarchical Linear Modeling, Behavioral Science Research, Computer Software, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Francis L. – Journal of Experimental Education, 2018
Studies analyzing clustered data sets using both multilevel models (MLMs) and ordinary least squares (OLS) regression have generally concluded that resulting point estimates, but not the standard errors, are comparable with each other. However, the accuracy of the estimates of OLS models is important to consider, as several alternative techniques…
Descriptors: Hierarchical Linear Modeling, Least Squares Statistics, Regression (Statistics), Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Bates, Michael David; Castellano, Katherine E.; Rabe-Hesketh, Sophia; Skrondal, Anders – Journal of Educational and Behavioral Statistics, 2014
This article discusses estimation of multilevel/hierarchical linear models that include cluster-level random intercepts and random slopes. Viewing the models as structural, the random intercepts and slopes represent the effects of omitted cluster-level covariates that may be correlated with included covariates. The resulting correlations between…
Descriptors: Correlation, Hierarchical Linear Modeling, Regression (Statistics), Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Francis L. – Journal of Experimental Education, 2016
Multilevel modeling has grown in use over the years as a way to deal with the nonindependent nature of observations found in clustered data. However, other alternatives to multilevel modeling are available that can account for observations nested within clusters, including the use of Taylor series linearization for variance estimation, the design…
Descriptors: Multivariate Analysis, Hierarchical Linear Modeling, Sample Size, Error of Measurement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tipton, Elizabeth; Pustejovsky, James E. – Society for Research on Educational Effectiveness, 2015
Randomized experiments are commonly used to evaluate the effectiveness of educational interventions. The goal of the present investigation is to develop small-sample corrections for multiple contrast hypothesis tests (i.e., F-tests) such as the omnibus test of meta-regression fit or a test for equality of three or more levels of a categorical…
Descriptors: Randomized Controlled Trials, Sample Size, Effect Size, Hypothesis Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Francis L. – Practical Assessment, Research & Evaluation, 2014
Clustered data (e.g., students within schools) are often analyzed in educational research where data are naturally nested. As a consequence, multilevel modeling (MLM) has commonly been used to study the contextual or group-level (e.g., school) effects on individual outcomes. The current study investigates the use of an alternative procedure to…
Descriptors: Hierarchical Linear Modeling, Regression (Statistics), Educational Research, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Lai, Mark H. C.; Kwok, Oi-man – Journal of Experimental Education, 2015
Educational researchers commonly use the rule of thumb of "design effect smaller than 2" as the justification of not accounting for the multilevel or clustered structure in their data. The rule, however, has not yet been systematically studied in previous research. In the present study, we generated data from three different models…
Descriptors: Educational Research, Research Design, Cluster Grouping, Statistical Data
Diakow, Ronli Phyllis – ProQuest LLC, 2013
This dissertation comprises three papers that propose, discuss, and illustrate models to make improved inferences about research questions regarding student achievement in education. Addressing the types of questions common in educational research today requires three different "extensions" to traditional educational assessment: (1)…
Descriptors: Inferences, Educational Assessment, Academic Achievement, Educational Research