Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 6 |
Descriptor
Bayesian Statistics | 6 |
Regression (Statistics) | 6 |
Structural Equation Models | 6 |
Maximum Likelihood Statistics | 4 |
Comparative Analysis | 2 |
Correlation | 2 |
Goodness of Fit | 2 |
Models | 2 |
Statistical Analysis | 2 |
Statistical Inference | 2 |
Academic Achievement | 1 |
More ▼ |
Source
AERA Online Paper Repository | 1 |
Educational Psychologist | 1 |
Educational and Psychological… | 1 |
Roeper Review | 1 |
Society for Research on… | 1 |
Structural Equation Modeling:… | 1 |
Author
Levy, Roy | 2 |
Ben Kelcey | 1 |
Cross, Jennifer Riedl | 1 |
Cross, Tracy L. | 1 |
David Kaplan | 1 |
Fangxing Bai | 1 |
Harring, Jeffrey R. | 1 |
Kjorte Harra | 1 |
Mammadov, Sakhavat | 1 |
Ward, Thomas J. | 1 |
Publication Type
Journal Articles | 4 |
Reports - Research | 4 |
Reports - Evaluative | 2 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Kjorte Harra; David Kaplan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The present work focuses on the performance of two types of shrinkage priors--the horseshoe prior and the recently developed regularized horseshoe prior--in the context of inducing sparsity in path analysis and growth curve models. Prior research has shown that these horseshoe priors induce sparsity by at least as much as the "gold…
Descriptors: Structural Equation Models, Bayesian Statistics, Regression (Statistics), Statistical Inference
Fangxing Bai; Ben Kelcey – Society for Research on Educational Effectiveness, 2024
Purpose and Background: Despite the flexibility of multilevel structural equation modeling (MLSEM), a practical limitation many researchers encounter is how to effectively estimate model parameters with typical sample sizes when there are many levels of (potentially disparate) nesting. We develop a method-of-moment corrected maximum likelihood…
Descriptors: Maximum Likelihood Statistics, Structural Equation Models, Sample Size, Faculty Development
Levy, Roy – AERA Online Paper Repository, 2017
A conceptual distinction is drawn between indicators, which serve to define latent variables, and outcomes, which do not. However, commonly used frequentist and Bayesian estimation procedures do not honor this distinction. They allow the outcomes to influence the latent variables and the measurement model parameters for the indicators, rendering…
Descriptors: Bayesian Statistics, Structural Equation Models, Sampling, Goodness of Fit
Levy, Roy – Educational Psychologist, 2016
In this article, I provide a conceptually oriented overview of Bayesian approaches to statistical inference and contrast them with frequentist approaches that currently dominate conventional practice in educational research. The features and advantages of Bayesian approaches are illustrated with examples spanning several statistical modeling…
Descriptors: Bayesian Statistics, Models, Educational Research, Innovation
Harring, Jeffrey R. – Educational and Psychological Measurement, 2014
Spline (or piecewise) regression models have been used in the past to account for patterns in observed data that exhibit distinct phases. The changepoint or knot marking the shift from one phase to the other, in many applications, is an unknown parameter to be estimated. As an extension of this framework, this research considers modeling the…
Descriptors: Regression (Statistics), Models, Statistical Analysis, Maximum Likelihood Statistics
Mammadov, Sakhavat; Ward, Thomas J.; Cross, Jennifer Riedl; Cross, Tracy L. – Roeper Review, 2016
To date, in gifted education and related fields various conventional factor analytic and clustering techniques have been used extensively for investigation of the underlying structure of data. Latent profile analysis is a relatively new method in the field. In this article, we provide an introduction to latent profile analysis for gifted education…
Descriptors: Statistical Analysis, Academically Gifted, Factor Analysis, Multivariate Analysis