Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 15 |
Descriptor
Error of Measurement | 17 |
Regression (Statistics) | 17 |
Structural Equation Models | 17 |
Comparative Analysis | 6 |
Statistical Analysis | 6 |
Simulation | 5 |
Computation | 4 |
Goodness of Fit | 4 |
Least Squares Statistics | 4 |
Maximum Likelihood Statistics | 4 |
Measurement Techniques | 4 |
More ▼ |
Source
Author
Ke-Hai Yuan | 2 |
Rosseel, Yves | 2 |
Alici, Devrim | 1 |
Bogaert, Jasper | 1 |
Bovaird, James A. | 1 |
Culpepper, Steven Andrew | 1 |
De Ayala, R. J. | 1 |
Devlieger, Ines | 1 |
Ferdous, Abdullah A. | 1 |
Harring, Jeffrey R. | 1 |
Hsu, Jui-Chen | 1 |
More ▼ |
Publication Type
Journal Articles | 16 |
Reports - Research | 9 |
Reports - Evaluative | 6 |
Reports - Descriptive | 2 |
Education Level
Elementary Education | 2 |
Secondary Education | 2 |
Grade 4 | 1 |
High Schools | 1 |
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
National Assessment Program… | 1 |
Program for International… | 1 |
What Works Clearinghouse Rating
Ke-Hai Yuan; Yongfei Fang – Grantee Submission, 2023
Observational data typically contain measurement errors. Covariance-based structural equation modelling (CB-SEM) is capable of modelling measurement errors and yields consistent parameter estimates. In contrast, methods of regression analysis using weighted composites as well as a partial least squares approach to SEM facilitate the prediction and…
Descriptors: Structural Equation Models, Regression (Statistics), Weighted Scores, Comparative Analysis
Miyazaki, Yasuo; Kamata, Akihito; Uekawa, Kazuaki; Sun, Yizhi – Educational and Psychological Measurement, 2022
This paper investigated consequences of measurement error in the pretest on the estimate of the treatment effect in a pretest-posttest design with the analysis of covariance (ANCOVA) model, focusing on both the direction and magnitude of its bias. Some prior studies have examined the magnitude of the bias due to measurement error and suggested…
Descriptors: Error of Measurement, Pretesting, Pretests Posttests, Statistical Bias
Ke-Hai Yuan; Zhiyong Zhang – Grantee Submission, 2024
Data in social and behavioral sciences typically contain measurement errors and also do not have predefined metrics. Structural equation modeling (SEM) is commonly used to analyze such data. This article discuss issues in latent-variable modeling as compared to regression analysis with composite-scores. Via logical reasoning and analytical results…
Descriptors: Error of Measurement, Measurement Techniques, Social Science Research, Behavioral Science Research
Bogaert, Jasper; Loh, Wen Wei; Rosseel, Yves – Educational and Psychological Measurement, 2023
Factor score regression (FSR) is widely used as a convenient alternative to traditional structural equation modeling (SEM) for assessing structural relations between latent variables. But when latent variables are simply replaced by factor scores, biases in the structural parameter estimates often have to be corrected, due to the measurement error…
Descriptors: Factor Analysis, Regression (Statistics), Structural Equation Models, Error of Measurement
Selvi, Hüseyin; Alici, Devrim; Uzun, Nezaket Bilge – Asian Journal of Education and Training, 2020
This study aims to comparatively examine the resultant findings by testing the measurement invariance with structural equation modeling in cases where the missing data is handled using the expectation-maximization (EM), regression imputation, and mean substitution methods in the complete data matrix and the 5% missing data matrix that is randomly…
Descriptors: Error of Measurement, Structural Equation Models, Attitude Measures, Student Attitudes
Sciffer, Michael G.; Perry, Laura B.; McConney, Andrew – British Journal of Sociology of Education, 2020
School socio-economic compositional (SEC) effects have been influential in educational research predicting a range of outcomes and influencing public policy. However, some recent studies have challenged the veracity of SEC effects when applying residualised-change and fixed effects models and simulating potential measurement errors in hierarchical…
Descriptors: School Demography, Socioeconomic Status, Socioeconomic Influences, Context Effect
Devlieger, Ines; Mayer, Axel; Rosseel, Yves – Educational and Psychological Measurement, 2016
In this article, an overview is given of four methods to perform factor score regression (FSR), namely regression FSR, Bartlett FSR, the bias avoiding method of Skrondal and Laake, and the bias correcting method of Croon. The bias correcting method is extended to include a reliable standard error. The four methods are compared with each other and…
Descriptors: Regression (Statistics), Comparative Analysis, Structural Equation Models, Monte Carlo Methods
Levy, Roy – Educational Psychologist, 2016
In this article, I provide a conceptually oriented overview of Bayesian approaches to statistical inference and contrast them with frequentist approaches that currently dominate conventional practice in educational research. The features and advantages of Bayesian approaches are illustrated with examples spanning several statistical modeling…
Descriptors: Bayesian Statistics, Models, Educational Research, Innovation
Politis, John; Politis, Denis – Electronic Journal of e-Learning, 2016
Online learning is becoming more attractive to perspective students because it offers them greater accessibility, convenience and flexibility to study at a reduced cost. While these benefits may attract prospective learners to embark on an online learning environment there remains little empirical evidence relating the skills and traits of…
Descriptors: Electronic Learning, Synchronous Communication, Integrated Learning Systems, Online Courses
Culpepper, Steven Andrew – Applied Psychological Measurement, 2012
Measurement error significantly biases interaction effects and distorts researchers' inferences regarding interactive hypotheses. This article focuses on the single-indicator case and shows how to accurately estimate group slope differences by disattenuating interaction effects with errors-in-variables (EIV) regression. New analytic findings were…
Descriptors: Evidence, Test Length, Interaction, Regression (Statistics)
Harring, Jeffrey R.; Weiss, Brandi A.; Hsu, Jui-Chen – Psychological Methods, 2012
Two Monte Carlo simulations were performed to compare methods for estimating and testing hypotheses of quadratic effects in latent variable regression models. The methods considered in the current study were (a) a 2-stage moderated regression approach using latent variable scores, (b) an unconstrained product indicator approach, (c) a latent…
Descriptors: Structural Equation Models, Geometric Concepts, Computation, Comparative Analysis
Kim, Doyoung; De Ayala, R. J.; Ferdous, Abdullah A.; Nering, Michael L. – Applied Psychological Measurement, 2011
To realize the benefits of item response theory (IRT), one must have model-data fit. One facet of a model-data fit investigation involves assessing the tenability of the conditional item independence (CII) assumption. In this Monte Carlo study, the comparative performance of 10 indices for identifying conditional item dependence is assessed. The…
Descriptors: Item Response Theory, Monte Carlo Methods, Error of Measurement, Statistical Analysis
Lu, Irene R. R.; Thomas, D. Roland – Structural Equation Modeling: A Multidisciplinary Journal, 2008
This article considers models involving a single structural equation with latent explanatory and/or latent dependent variables where discrete items are used to measure the latent variables. Our primary focus is the use of scores as proxies for the latent variables and carrying out ordinary least squares (OLS) regression on such scores to estimate…
Descriptors: Least Squares Statistics, Computation, Item Response Theory, Structural Equation Models
Schochet, Peter Z. – National Center for Education Evaluation and Regional Assistance, 2009
This paper examines the estimation of two-stage clustered RCT designs in education research using the Neyman causal inference framework that underlies experiments. The key distinction between the considered causal models is whether potential treatment and control group outcomes are considered to be fixed for the study population (the…
Descriptors: Control Groups, Causal Models, Statistical Significance, Computation
Little, Todd D.; Bovaird, James A.; Widaman, Keith F. – Structural Equation Modeling: A Multidisciplinary Journal, 2006
The goals of this article are twofold: (a) briefly highlight the merits of residual centering for representing interaction and powered terms in standard regression contexts (e.g., Lance, 1988), and (b) extend the residual centering procedure to represent latent variable interactions. The proposed method for representing latent variable…
Descriptors: Interaction, Structural Equation Models, Evaluation Methods, Regression (Statistics)
Previous Page | Next Page »
Pages: 1 | 2