Publication Date
In 2025 | 10 |
Since 2024 | 76 |
Since 2021 (last 5 years) | 439 |
Since 2016 (last 10 years) | 4511 |
Since 2006 (last 20 years) | 12152 |
Descriptor
Regression (Statistics) | 14047 |
Foreign Countries | 4265 |
Correlation | 4128 |
Statistical Analysis | 3532 |
Predictor Variables | 3259 |
Questionnaires | 2095 |
Academic Achievement | 2029 |
Gender Differences | 1822 |
Comparative Analysis | 1743 |
Scores | 1594 |
College Students | 1367 |
More ▼ |
Source
Author
Publication Type
Education Level
Audience
Researchers | 173 |
Practitioners | 66 |
Teachers | 65 |
Policymakers | 52 |
Administrators | 26 |
Students | 13 |
Counselors | 4 |
Parents | 4 |
Community | 1 |
Media Staff | 1 |
Location
Turkey | 352 |
California | 323 |
Australia | 312 |
Canada | 289 |
Germany | 239 |
United States | 236 |
Netherlands | 209 |
Texas | 209 |
China | 207 |
United Kingdom | 194 |
Florida | 169 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Meets WWC Standards without Reservations | 12 |
Meets WWC Standards with or without Reservations | 27 |
Does not meet standards | 28 |
Christian Röver; David Rindskopf; Tim Friede – Research Synthesis Methods, 2024
The trace plot is seldom used in meta-analysis, yet it is a very informative plot. In this article, we define and illustrate what the trace plot is, and discuss why it is important. The Bayesian version of the plot combines the posterior density of [tau], the between-study standard deviation, and the shrunken estimates of the study effects as a…
Descriptors: Graphs, Meta Analysis, Bayesian Statistics, Visualization

Jason Schoeneberger; Christopher Rhoads – Grantee Submission, 2024
Regression discontinuity (RD) designs are increasingly used for causal evaluations. For example, if a student's need for a literacy intervention is determined by a low score on a past performance indicator and that intervention is provided to all students who fall below a cutoff on that indicator, an RD study can determine the intervention's main…
Descriptors: Regression (Statistics), Causal Models, Evaluation Methods, Multivariate Analysis
David Voas; Laura Watt – Teaching Statistics: An International Journal for Teachers, 2025
Binary logistic regression is one of the most widely used statistical tools. The method uses odds, log odds, and odds ratios, which are difficult to understand and interpret. Understanding of logistic regression tends to fall down in one of three ways: (1) Many students and researchers come to believe that an odds ratio translates directly into…
Descriptors: Statistics, Statistics Education, Regression (Statistics), Misconceptions
Jason A. Schoeneberger; Christopher Rhoads – American Journal of Evaluation, 2025
Regression discontinuity (RD) designs are increasingly used for causal evaluations. However, the literature contains little guidance for conducting a moderation analysis within an RDD context. The current article focuses on moderation with a single binary variable. A simulation study compares: (1) different bandwidth selectors and (2) local…
Descriptors: Regression (Statistics), Causal Models, Evaluation Methods, Multivariate Analysis
James Pustejovsky; Jingru Zhang; Elizabeth Tipton – Society for Research on Educational Effectiveness, 2023
Background/Context: In meta-analyses examining educational interventions, researchers seek to understand the distribution of intervention impacts, in order to draw generalizations about what works, for whom, and under what conditions. One common way to examine equity implications in such reviews is through moderator analysis, which involves…
Descriptors: Meta Analysis, Effect Size, Statistics, Regression (Statistics)
Michael Nagel; Lukas Fischer; Tim Pawlowski; Augustin Kelava – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Bayesian estimations of complex regression models with high-dimensional parameter spaces require advanced priors, capable of addressing both sparsity and multicollinearity in the data. The Dirichlet-horseshoe, a new prior distribution that combines and expands on the concepts of the regularized horseshoe and the Dirichlet-Laplace priors, is a…
Descriptors: Bayesian Statistics, Regression (Statistics), Computation, Statistical Distributions
Sy Han Chiou; Gongjun Xu; Jun Yan; Chiung-Yu Huang – Grantee Submission, 2023
Recurrent event analyses have found a wide range of applications in biomedicine, public health, and engineering, among others, where study subjects may experience a sequence of event of interest during follow-up. The R package reReg offers a comprehensive collection of practical and easy-to-use tools for regression analysis of recurrent events,…
Descriptors: Data Analysis, Computer Software, Regression (Statistics), Models
Carlos Cinelli; Andrew Forney; Judea Pearl – Sociological Methods & Research, 2024
Many students of statistics and econometrics express frustration with the way a problem known as "bad control" is treated in the traditional literature. The issue arises when the addition of a variable to a regression equation produces an unintended discrepancy between the regression coefficient and the effect that the coefficient is…
Descriptors: Regression (Statistics), Robustness (Statistics), Error of Measurement, Testing Problems
Heterogeneity Estimation in Meta-Analysis: Investigating Methods for Dependent Effect Size Estimates
Jingru Zhang; James E. Pustejovsky – Society for Research on Educational Effectiveness, 2024
Background/Context: In meta-analysis examining educational intervention, characterizing heterogeneity and exploring the sources of variation in synthesized effects have become increasingly prominent areas of interest. When combining results from a collection of studies, statistical dependency among their effects size estimates will arise when a…
Descriptors: Meta Analysis, Investigations, Effect Size, Computation
Kajal Mahawar; Punam Rattan – Education and Information Technologies, 2025
Higher education institutions have consistently strived to provide students with top-notch education. To achieve better outcomes, machine learning (ML) algorithms greatly simplify the prediction process. ML can be utilized by academicians to obtain insight into student data and mine data for forecasting the performance. In this paper, the authors…
Descriptors: Electronic Learning, Artificial Intelligence, Academic Achievement, Prediction
Beth Chance; Karen McGaughey; Sophia Chung; Alex Goodman; Soma Roy; Nathan Tintle – Journal of Statistics and Data Science Education, 2025
"Simulation-based inference" is often considered a pedagogical strategy for helping students develop inferential reasoning, for example, giving them a visual and concrete reference for deciding whether the observed statistic is unlikely to happen by chance alone when the null hypothesis is true. In this article, we highlight for teachers…
Descriptors: Simulation, Sampling, Randomized Controlled Trials, Hypothesis Testing
Aarnes Gudmestad; Thomas A. Metzger – Language Learning, 2025
In this Methods Showcase Article, we illustrate mixed-effects modeling with a multinomial dependent variable as a means of explaining complexities in language. We model data on future-time reference in second language Spanish, which consists of a nominal dependent variable that has three levels, measured over 73 participants. We offer step-by-step…
Descriptors: Second Language Learning, Spanish, Applied Linguistics, Predictor Variables
Yaosheng Lou; Kimberly F. Colvin – Discover Education, 2025
Predicting student performance has been a critical focus of educational research. With an effective predictive model, schools can identify potentially at-risk students and implement timely interventions to support student success. Recent developments in educational data mining (EDM) have introduced several machine learning techniques that can…
Descriptors: Educational Research, Data Collection, Performance, Prediction
William Herbert Yeaton – International Journal of Research & Method in Education, 2024
Though previously unacknowledged, a SMART (Sequential Multiple Assignment Randomized Trial) design uses both regression discontinuity (RD) and randomized controlled trial (RCT) designs. This combination structure creates a conceptual symbiosis between the two designs that enables both RCT- and previously unrecognized, RD-based inferential claims.…
Descriptors: Research Design, Randomized Controlled Trials, Regression (Statistics), Inferences
Il Do Ha – Measurement: Interdisciplinary Research and Perspectives, 2024
Recently, deep learning has become a pervasive tool in prediction problems for structured and/or unstructured big data in various areas including science and engineering. In particular, deep neural network models (i.e. a basic core model of deep learning) can be viewed as an extension of statistical models by going through the incorporation of…
Descriptors: Artificial Intelligence, Statistical Analysis, Models, Algorithms