NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Peter Z. Schochet – Journal of Educational and Behavioral Statistics, 2025
Random encouragement designs evaluate treatments that aim to increase participation in a program or activity. These randomized controlled trials (RCTs) can also assess the mediated effects of participation itself on longer term outcomes using a complier average causal effect (CACE) estimation framework. This article considers power analysis…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Heining Cham; Hyunjung Lee; Igor Migunov – Asia Pacific Education Review, 2024
The randomized control trial (RCT) is the primary experimental design in education research due to its strong internal validity for causal inference. However, in situations where RCTs are not feasible or ethical, quasi-experiments are alternatives to establish causal inference. This paper serves as an introduction to several quasi-experimental…
Descriptors: Causal Models, Educational Research, Quasiexperimental Design, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Peter Schochet – Society for Research on Educational Effectiveness, 2024
Random encouragement designs are randomized controlled trials (RCTs) that test interventions aimed at increasing participation in a program or activity whose take up is not universal. In these RCTs, instead of randomizing individuals or clusters directly into treatment and control groups to participate in a program or activity, the randomization…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Thomas Cook; Mansi Wadhwa; Jingwen Zheng – Society for Research on Educational Effectiveness, 2023
Context: A perennial problem in applied statistics is the inability to justify strong claims about cause-and-effect relationships without full knowledge of the mechanism determining selection into treatment. Few research designs other than the well-implemented random assignment study meet this requirement. Researchers have proposed partial…
Descriptors: Observation, Research Design, Causal Models, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Cuartas, Jorge; McCoy, Dana Charles – International Journal of Behavioral Development, 2021
Mediation has played a critical role in developmental theory and research. Yet, developmentalists rarely discuss the methodological challenges of establishing causality in mediation analysis or potential strategies to improve the identification of causal mediation effects. In this article, we discuss the potential outcomes framework from…
Descriptors: Mediation Theory, Behavior Development, Influences, Inferences
Peer reviewed Peer reviewed
Direct linkDirect link
Xu Qin – Grantee Submission, 2023
When designing a study for causal mediation analysis, it is crucial to conduct a power analysis to determine the sample size required to detect the causal mediation effects with sufficient power. However, the development of power analysis methods for causal mediation analysis has lagged far behind. To fill the knowledge gap, I proposed a…
Descriptors: Sample Size, Statistical Analysis, Causal Models, Mediation Theory
Gelman, Andrew; Imbens, Guido – National Bureau of Economic Research, 2014
It is common in regression discontinuity analysis to control for high order (third, fourth, or higher) polynomials of the forcing variable. We argue that estimators for causal effects based on such methods can be misleading, and we recommend researchers do not use them, and instead use estimators based on local linear or quadratic polynomials or…
Descriptors: Regression (Statistics), Mathematical Models, Causal Models, Research Methodology
Porter, Kristin E.; Reardon, Sean F.; Unlu, Fatih; Bloom, Howard S.; Robinson-Cimpian, Joseph P. – MDRC, 2014
A valuable extension of the single-rating regression discontinuity design (RDD) is a multiple-rating RDD (MRRDD). To date, four main methods have been used to estimate average treatment effects at the multiple treatment frontiers of an MRRDD: the "surface" method, the "frontier" method, the "binding-score" method, and…
Descriptors: Regression (Statistics), Research Design, Quasiexperimental Design, Research Methodology
Reardon, Sean F.; Raudenbush, Stephen W. – Grantee Submission, 2013
The increasing availability of data from multi-site randomized trials provides a potential opportunity to use instrumental variables methods to study the effects of multiple hypothesized mediators of the effect of a treatment. We derive nine assumptions needed to identify the effects of multiple mediators when using site-by-treatment interactions…
Descriptors: Causal Models, Measures (Individuals), Research Design, Context Effect
Peer reviewed Peer reviewed
Direct linkDirect link
Marcus, Sue M.; Stuart, Elizabeth A.; Wang, Pei; Shadish, William R.; Steiner, Peter M. – Psychological Methods, 2012
Although randomized studies have high internal validity, generalizability of the estimated causal effect from randomized clinical trials to real-world clinical or educational practice may be limited. We consider the implication of randomized assignment to treatment, as compared with choice of preferred treatment as it occurs in real-world…
Descriptors: Educational Practices, Program Effectiveness, Validity, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Shadish, William R. – Psychological Methods, 2010
This article compares Donald Campbell's and Donald Rubin's work on causal inference in field settings on issues of epistemology, theories of cause and effect, methodology, statistics, generalization, and terminology. The two approaches are quite different but compatible, differing mostly in matters of bandwidth versus fidelity. Campbell's work…
Descriptors: Inferences, Generalization, Epistemology, Causal Models
Rosenthal, James A. – Springer, 2011
Written by a social worker for social work students, this is a nuts and bolts guide to statistics that presents complex calculations and concepts in clear, easy-to-understand language. It includes numerous examples, data sets, and issues that students will encounter in social work practice. The first section introduces basic concepts and terms to…
Descriptors: Statistics, Data Interpretation, Social Work, Social Science Research
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Schochet, Peter Z. – National Center for Education Evaluation and Regional Assistance, 2009
This paper examines the estimation of two-stage clustered RCT designs in education research using the Neyman causal inference framework that underlies experiments. The key distinction between the considered causal models is whether potential treatment and control group outcomes are considered to be fixed for the study population (the…
Descriptors: Control Groups, Causal Models, Statistical Significance, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Stuart, Elizabeth A. – Educational Researcher, 2007
Education researchers, practitioners, and policymakers alike are committed to identifying interventions that teach students more effectively. Increased emphasis on evaluation and accountability has increased desire for sound evaluations of these interventions; and at the same time, school-level data have become increasingly available. This article…
Descriptors: Research Methodology, Computation, Causal Models, Intervention