Publication Date
In 2025 | 1 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 7 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 17 |
Descriptor
Causal Models | 20 |
Research Design | 20 |
Statistical Analysis | 20 |
Computation | 8 |
Research Methodology | 8 |
Error of Measurement | 7 |
Intervention | 7 |
Comparative Analysis | 5 |
Regression (Statistics) | 5 |
Educational Research | 4 |
Pretests Posttests | 4 |
More ▼ |
Source
Author
Cook, Thomas D. | 2 |
Amy K. Nuttall | 1 |
Austin, John | 1 |
Bodner, George M. | 1 |
Carlson, Janet | 1 |
Carr, James E. | 1 |
Cuartas, Jorge | 1 |
Dong, Nianbo | 1 |
Gagnon, Douglas J. | 1 |
Getty, Stephen | 1 |
Heining Cham | 1 |
More ▼ |
Publication Type
Journal Articles | 13 |
Reports - Research | 10 |
Reports - Descriptive | 6 |
Reports - Evaluative | 3 |
Books | 1 |
Guides - Non-Classroom | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Elementary Education | 1 |
Audience
Researchers | 2 |
Location
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Environment… | 1 |
Early Childhood Longitudinal… | 1 |
What Works Clearinghouse Rating
Peter Z. Schochet – Journal of Educational and Behavioral Statistics, 2025
Random encouragement designs evaluate treatments that aim to increase participation in a program or activity. These randomized controlled trials (RCTs) can also assess the mediated effects of participation itself on longer term outcomes using a complier average causal effect (CACE) estimation framework. This article considers power analysis…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
Heining Cham; Hyunjung Lee; Igor Migunov – Asia Pacific Education Review, 2024
The randomized control trial (RCT) is the primary experimental design in education research due to its strong internal validity for causal inference. However, in situations where RCTs are not feasible or ethical, quasi-experiments are alternatives to establish causal inference. This paper serves as an introduction to several quasi-experimental…
Descriptors: Causal Models, Educational Research, Quasiexperimental Design, Research Design
Peter Schochet – Society for Research on Educational Effectiveness, 2024
Random encouragement designs are randomized controlled trials (RCTs) that test interventions aimed at increasing participation in a program or activity whose take up is not universal. In these RCTs, instead of randomizing individuals or clusters directly into treatment and control groups to participate in a program or activity, the randomization…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
Cuartas, Jorge; McCoy, Dana Charles – International Journal of Behavioral Development, 2021
Mediation has played a critical role in developmental theory and research. Yet, developmentalists rarely discuss the methodological challenges of establishing causality in mediation analysis or potential strategies to improve the identification of causal mediation effects. In this article, we discuss the potential outcomes framework from…
Descriptors: Mediation Theory, Behavior Development, Influences, Inferences
Qinyun Lin; Amy K. Nuttall; Qian Zhang; Kenneth A. Frank – Grantee Submission, 2023
Empirical studies often demonstrate multiple causal mechanisms potentially involving simultaneous or causally related mediators. However, researchers often use simple mediation models to understand the processes because they do not or cannot measure other theoretically relevant mediators. In such cases, another potentially relevant but unobserved…
Descriptors: Causal Models, Mediation Theory, Error of Measurement, Statistical Inference
Xu Qin – Grantee Submission, 2023
When designing a study for causal mediation analysis, it is crucial to conduct a power analysis to determine the sample size required to detect the causal mediation effects with sufficient power. However, the development of power analysis methods for causal mediation analysis has lagged far behind. To fill the knowledge gap, I proposed a…
Descriptors: Sample Size, Statistical Analysis, Causal Models, Mediation Theory
Jane E. Miller – Numeracy, 2023
Students often believe that statistical significance is the only determinant of whether a quantitative result is "important." In this paper, I review traditional null hypothesis statistical testing to identify what questions inferential statistics can and cannot answer, including statistical significance, effect size and direction,…
Descriptors: Statistical Significance, Holistic Approach, Statistical Inference, Effect Size
Marzano, Robert J.; Parsley, Danette; Gagnon, Douglas J.; Norford, Jennifer S. – Marzano Research, 2020
Teachers engaging in research has been discussed and carried out under the heuristics and methodologies of action research (Manfra, 2019; Pine, 2009). A typical action research project might involve an individual teacher studying the effectiveness of a specific instructional strategy like having students preview content before receiving direct…
Descriptors: Teacher Researchers, Teaching Methods, Intervention, Generalization
Tang, Yang; Cook, Thomas D.; Kisbu-Sakarya, Yasemin – Society for Research on Educational Effectiveness, 2015
Regression discontinuity design (RD) has been widely used to produce reliable causal estimates. Researchers have validated the accuracy of RD design using within study comparisons (Cook, Shadish & Wong, 2008; Cook & Steiner, 2010; Shadish et al, 2011). Within study comparisons examines the validity of a quasi-experiment by comparing its…
Descriptors: Pretests Posttests, Statistical Bias, Accuracy, Regression (Statistics)
Dong, Nianbo – American Journal of Evaluation, 2015
Researchers have become increasingly interested in programs' main and interaction effects of two variables (A and B, e.g., two treatment variables or one treatment variable and one moderator) on outcomes. A challenge for estimating main and interaction effects is to eliminate selection bias across A-by-B groups. I introduce Rubin's causal model to…
Descriptors: Probability, Statistical Analysis, Research Design, Causal Models
Taylor, Joseph; Kowalski, Susan; Wilson, Christopher; Getty, Stephen; Carlson, Janet – Journal of Research in Science Teaching, 2013
This paper focuses on the trade-offs that lie at the intersection of methodological requirements for causal effect studies and policies that affect how and to what extent schools engage in such studies. More specifically, current federal funding priorities encourage large-scale randomized studies of interventions in authentic settings. At the same…
Descriptors: Science Instruction, Research Methodology, Causal Models, Influences
Wing, Coady; Cook, Thomas D. – Journal of Policy Analysis and Management, 2013
The sharp regression discontinuity design (RDD) has three key weaknesses compared to the randomized clinical trial (RCT). It has lower statistical power, it is more dependent on statistical modeling assumptions, and its treatment effect estimates are limited to the narrow subpopulation of cases immediately around the cutoff, which is rarely of…
Descriptors: Regression (Statistics), Research Design, Statistical Analysis, Research Problems
Nordmoe, Eric D. – Teaching Statistics: An International Journal for Teachers, 2008
This article reports on a delicious finding from a recent study claiming a causal link between dark chocolate consumption and blood pressure reductions. In the article, I provide ideas for using this study to whet student appetites for a discussion of statistical ideas, including experimental design, measurement error and inference methods.
Descriptors: Causal Models, Health Behavior, Research Design, Hypertension
Rosenthal, James A. – Springer, 2011
Written by a social worker for social work students, this is a nuts and bolts guide to statistics that presents complex calculations and concepts in clear, easy-to-understand language. It includes numerous examples, data sets, and issues that students will encounter in social work practice. The first section introduces basic concepts and terms to…
Descriptors: Statistics, Data Interpretation, Social Work, Social Science Research
Schochet, Peter Z. – National Center for Education Evaluation and Regional Assistance, 2009
This paper examines the estimation of two-stage clustered RCT designs in education research using the Neyman causal inference framework that underlies experiments. The key distinction between the considered causal models is whether potential treatment and control group outcomes are considered to be fixed for the study population (the…
Descriptors: Control Groups, Causal Models, Statistical Significance, Computation
Previous Page | Next Page ยป
Pages: 1 | 2