NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Peter Z. Schochet – Journal of Educational and Behavioral Statistics, 2025
Random encouragement designs evaluate treatments that aim to increase participation in a program or activity. These randomized controlled trials (RCTs) can also assess the mediated effects of participation itself on longer term outcomes using a complier average causal effect (CACE) estimation framework. This article considers power analysis…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Peter Schochet – Society for Research on Educational Effectiveness, 2024
Random encouragement designs are randomized controlled trials (RCTs) that test interventions aimed at increasing participation in a program or activity whose take up is not universal. In these RCTs, instead of randomizing individuals or clusters directly into treatment and control groups to participate in a program or activity, the randomization…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Ting Ye; Ted Westling; Lindsay Page; Luke Keele – Grantee Submission, 2024
The clustered observational study (COS) design is the observational study counterpart to the clustered randomized trial. In a COS, a treatment is assigned to intact groups, and all units within the group are exposed to the treatment. However, the treatment is non-randomly assigned. COSs are common in both education and health services research. In…
Descriptors: Nonparametric Statistics, Identification, Causal Models, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Thomas Cook; Mansi Wadhwa; Jingwen Zheng – Society for Research on Educational Effectiveness, 2023
Context: A perennial problem in applied statistics is the inability to justify strong claims about cause-and-effect relationships without full knowledge of the mechanism determining selection into treatment. Few research designs other than the well-implemented random assignment study meet this requirement. Researchers have proposed partial…
Descriptors: Observation, Research Design, Causal Models, Computation
Qinyun Lin; Amy K. Nuttall; Qian Zhang; Kenneth A. Frank – Grantee Submission, 2023
Empirical studies often demonstrate multiple causal mechanisms potentially involving simultaneous or causally related mediators. However, researchers often use simple mediation models to understand the processes because they do not or cannot measure other theoretically relevant mediators. In such cases, another potentially relevant but unobserved…
Descriptors: Causal Models, Mediation Theory, Error of Measurement, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Wing, Coady; Bello-Gomez, Ricardo A. – American Journal of Evaluation, 2018
Treatment effect estimates from a "regression discontinuity design" (RDD) have high internal validity. However, the arguments that support the design apply to a subpopulation that is narrower and usually different from the population of substantive interest in evaluation research. The disconnect between RDD population and the…
Descriptors: Regression (Statistics), Research Design, Validity, Evaluation Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tang, Yang; Cook, Thomas D.; Kisbu-Sakarya, Yasemin – Society for Research on Educational Effectiveness, 2015
Regression discontinuity design (RD) has been widely used to produce reliable causal estimates. Researchers have validated the accuracy of RD design using within study comparisons (Cook, Shadish & Wong, 2008; Cook & Steiner, 2010; Shadish et al, 2011). Within study comparisons examines the validity of a quasi-experiment by comparing its…
Descriptors: Pretests Posttests, Statistical Bias, Accuracy, Regression (Statistics)
Porter, Kristin E.; Reardon, Sean F.; Unlu, Fatih; Bloom, Howard S.; Robinson-Cimpian, Joseph P. – MDRC, 2014
A valuable extension of the single-rating regression discontinuity design (RDD) is a multiple-rating RDD (MRRDD). To date, four main methods have been used to estimate average treatment effects at the multiple treatment frontiers of an MRRDD: the "surface" method, the "frontier" method, the "binding-score" method, and…
Descriptors: Regression (Statistics), Research Design, Quasiexperimental Design, Research Methodology
Reardon, Sean F.; Raudenbush, Stephen W. – Grantee Submission, 2013
The increasing availability of data from multi-site randomized trials provides a potential opportunity to use instrumental variables methods to study the effects of multiple hypothesized mediators of the effect of a treatment. We derive nine assumptions needed to identify the effects of multiple mediators when using site-by-treatment interactions…
Descriptors: Causal Models, Measures (Individuals), Research Design, Context Effect
Helberg, Clay – 1996
Abuses and misuses of statistics are frequent. This digest attempts to warn against these in three broad classes of pitfalls: sources of bias, errors of methodology, and misinterpretation of results. Sources of bias are conditions or circumstances that affect the external validity of statistical results. In order for a researcher to make…
Descriptors: Causal Models, Comparative Analysis, Data Analysis, Error of Measurement