Publication Date
In 2025 | 0 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 7 |
Since 2016 (last 10 years) | 12 |
Since 2006 (last 20 years) | 17 |
Descriptor
Causal Models | 17 |
Research Methodology | 17 |
Statistical Inference | 17 |
Computation | 7 |
Research Design | 6 |
Error of Measurement | 5 |
Regression (Statistics) | 5 |
Hypothesis Testing | 4 |
Observation | 4 |
Randomized Controlled Trials | 4 |
Simulation | 4 |
More ▼ |
Source
Author
Miratrix, Luke W. | 2 |
Pashley, Nicole E. | 2 |
Adam C. Sales | 1 |
Alrik Thiem | 1 |
Ashish Gurung | 1 |
Bennett, Elisabeth E. | 1 |
Blake H. Heller | 1 |
Bloom, Howard S. | 1 |
Carly D. Robinson | 1 |
Cervone, Daniel | 1 |
Dadalauri, Nina | 1 |
More ▼ |
Publication Type
Journal Articles | 7 |
Reports - Research | 7 |
Reports - Evaluative | 4 |
Reports - Descriptive | 3 |
Books | 2 |
Guides - Non-Classroom | 1 |
Numerical/Quantitative Data | 1 |
Opinion Papers | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Audience
Location
Georgia | 1 |
Laws, Policies, & Programs
Aid to Families with… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Alrik Thiem; Lusine Mkrtchyan – Field Methods, 2024
Qualitative comparative analysis (QCA) is an empirical research method that has gained some popularity in the social sciences. At the same time, the literature has long been convinced that QCA is prone to committing causal fallacies when confronted with non-causal data. More specifically, beyond a certain case-to-factor ratio, the method is…
Descriptors: Qualitative Research, Comparative Analysis, Research Methodology, Benchmarking
Adam C. Sales; Ethan Prihar; Johann Gagnon-Bartsch; Ashish Gurung; Neil T. Heffernan – Grantee Submission, 2022
Randomized A/B tests allow causal estimation without confounding but are often under-powered. This paper uses a new dataset, including over 250 randomized comparisons conducted in an online learning platform, to illustrate a method combining data from A/B tests with log data from users who were not in the experiment. Inference remains exact and…
Descriptors: Research Methodology, Educational Experiments, Causal Models, Computation
Blake H. Heller; Carly D. Robinson – Annenberg Institute for School Reform at Brown University, 2024
Quasi-experimental methods are a cornerstone of applied social science, providing critical answers to causal questions that inform policy and practice. Although open science principles have influenced experimental research norms across the social sciences, these practices are rarely implemented in quasi-experimental research. In this paper, we…
Descriptors: Social Science Research, Research Methodology, Quasiexperimental Design, Scientific Principles

Kenneth A. Frank; Qinyun Lin; Spiro J. Maroulis – Grantee Submission, 2024
In the complex world of educational policy, causal inferences will be debated. As we review non-experimental designs in educational policy, we focus on how to clarify and focus the terms of debate. We begin by presenting the potential outcomes/counterfactual framework and then describe approximations to the counterfactual generated from the…
Descriptors: Causal Models, Statistical Inference, Observation, Educational Policy
Jane E. Miller – Numeracy, 2023
Students often believe that statistical significance is the only determinant of whether a quantitative result is "important." In this paper, I review traditional null hypothesis statistical testing to identify what questions inferential statistics can and cannot answer, including statistical significance, effect size and direction,…
Descriptors: Statistical Significance, Holistic Approach, Statistical Inference, Effect Size
Xu Qin; Lijuan Wang – Grantee Submission, 2023
Research questions regarding how, for whom, and where a treatment achieves its effect on an outcome have become increasingly valued in substantive research. Such questions can be answered by causal moderated mediation analysis, which assesses the heterogeneity of the mediation mechanism underlying the treatment effect across individual and…
Descriptors: Causal Models, Mediation Theory, Computer Software, Statistical Analysis
Pashley, Nicole E.; Miratrix, Luke W. – Journal of Educational and Behavioral Statistics, 2021
Evaluating blocked randomized experiments from a potential outcomes perspective has two primary branches of work. The first focuses on larger blocks, with multiple treatment and control units in each block. The second focuses on matched pairs, with a single treatment and control unit in each block. These literatures not only provide different…
Descriptors: Causal Models, Statistical Inference, Research Methodology, Computation
Dorie, Vincent; Hill, Jennifer; Shalit, Uri; Scott, Marc; Cervone, Daniel – Grantee Submission, 2018
Statisticians have made great progress in creating methods that reduce our reliance on parametric assumptions. However this explosion in research has resulted in a breadth of inferential strategies that both create opportunities for more reliable inference as well as complicate the choices that an applied researcher has to make and defend.…
Descriptors: Statistical Inference, Simulation, Causal Models, Research Methodology
Pashley, Nicole E.; Miratrix, Luke W. – Grantee Submission, 2019
In the causal inference literature, evaluating blocking from a potential outcomes perspective has two main branches of work. The first focuses on larger blocks, with multiple treatment and control units in each block. The second focuses on matched pairs, with a single treatment and control unit in each block. These literatures not only provide…
Descriptors: Causal Models, Statistical Inference, Research Methodology, Computation
Hitchcock, John H.; Johnson, R. Burke; Schoonenboom, Judith – Research in the Schools, 2018
The central purpose of this article is to provide an overview of the many ways in which special educators can generate and think about causal inference to inform policy and practice. Consideration of causality across different lenses can be carried out by engaging in multiple method and mixed methods ways of thinking about inference. This article…
Descriptors: Causal Models, Statistical Inference, Special Education, Educational Research
Ulriksen, Marianne S.; Dadalauri, Nina – International Journal of Social Research Methodology, 2016
Single case studies can provide vital contributions to theory-testing in social science studies. Particularly, by applying the process-tracing method, case studies can test theoretical frameworks through a rigorous research design that ensures substantial empirical leverage. While most scholarly contributions on process-tracing focus on either…
Descriptors: Case Studies, Hypothesis Testing, Social Science Research, Research Methodology
Bennett, Elisabeth E.; McWhorter, Rochell R. – European Journal of Training and Development, 2016
Purpose: The purpose of this paper is to explore the role of qualitative research in causality, with particular emphasis on process causality. In one paper, it is not possible to discuss all the issues of causality, but the aim is to provide useful ways of thinking about causality and qualitative research. Specifically, a brief overview of the…
Descriptors: Qualitative Research, Causal Models, Statistical Inference, Definitions
Imbens, Guido W.; Rubin, Donald B. – Cambridge University Press, 2015
Most questions in social and biomedical sciences are causal in nature: what would happen to individuals, or to groups, if part of their environment were changed? In this groundbreaking text, two world-renowned experts present statistical methods for studying such questions. This book starts with the notion of potential outcomes, each corresponding…
Descriptors: Causal Models, Statistical Inference, Statistics, Social Sciences
Gelman, Andrew; Imbens, Guido – National Bureau of Economic Research, 2014
It is common in regression discontinuity analysis to control for high order (third, fourth, or higher) polynomials of the forcing variable. We argue that estimators for causal effects based on such methods can be misleading, and we recommend researchers do not use them, and instead use estimators based on local linear or quadratic polynomials or…
Descriptors: Regression (Statistics), Mathematical Models, Causal Models, Research Methodology
Porter, Kristin E.; Reardon, Sean F.; Unlu, Fatih; Bloom, Howard S.; Robinson-Cimpian, Joseph P. – MDRC, 2014
A valuable extension of the single-rating regression discontinuity design (RDD) is a multiple-rating RDD (MRRDD). To date, four main methods have been used to estimate average treatment effects at the multiple treatment frontiers of an MRRDD: the "surface" method, the "frontier" method, the "binding-score" method, and…
Descriptors: Regression (Statistics), Research Design, Quasiexperimental Design, Research Methodology
Previous Page | Next Page ยป
Pages: 1 | 2