NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Kenneth A. Frank; Qinyun Lin; Spiro J. Maroulis – Grantee Submission, 2024
In the complex world of educational policy, causal inferences will be debated. As we review non-experimental designs in educational policy, we focus on how to clarify and focus the terms of debate. We begin by presenting the potential outcomes/counterfactual framework and then describe approximations to the counterfactual generated from the…
Descriptors: Causal Models, Statistical Inference, Observation, Educational Policy
Dorie, Vincent; Hill, Jennifer; Shalit, Uri; Scott, Marc; Cervone, Daniel – Grantee Submission, 2018
Statisticians have made great progress in creating methods that reduce our reliance on parametric assumptions. However this explosion in research has resulted in a breadth of inferential strategies that both create opportunities for more reliable inference as well as complicate the choices that an applied researcher has to make and defend.…
Descriptors: Statistical Inference, Simulation, Causal Models, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Katz, Jack – Sociological Methods & Research, 2015
There is unexamined potential for developing and testing rival causal explanations in the type of data that participant observation is best suited to create: descriptions of in situ social interaction crafted from the participants' perspectives. By intensively examining a single ethnography, we can see how multiple predictions can be derived from…
Descriptors: Abstract Reasoning, Observation, Field Studies, Notetaking
Imbens, Guido W.; Rubin, Donald B. – Cambridge University Press, 2015
Most questions in social and biomedical sciences are causal in nature: what would happen to individuals, or to groups, if part of their environment were changed? In this groundbreaking text, two world-renowned experts present statistical methods for studying such questions. This book starts with the notion of potential outcomes, each corresponding…
Descriptors: Causal Models, Statistical Inference, Statistics, Social Sciences
Rose, Roderick A. – ProQuest LLC, 2013
An important target of education policy is to improve overall teacher effectiveness using evidence-based policies. Randomized control trials (RCTs), which randomly assign study participants or groups of participants to treatment and control conditions, are not always practical or possible and observational studies using rigorous quasi-experimental…
Descriptors: Teacher Effectiveness, Causal Models, Inferences, Observation
Peer reviewed Peer reviewed
Direct linkDirect link
Jo, Booil; Stuart, Elizabeth A. – Journal of Research on Educational Effectiveness, 2012
The authors thank Dr. Lindsay Page for providing a nice illustration of the use of the principal stratification framework to define causal effects, and a Bayesian model for effect estimation. They hope that her well-written article will help expose education researchers to these concepts and methods, and move the field of mediation analysis in…
Descriptors: Bayesian Statistics, Educational Experiments, Educational Research, Observation
Steiner, Peter M. – Society for Research on Educational Effectiveness, 2011
Given the different possibilities of matching in the context of multilevel data and the lack of research on corresponding matching strategies, the author investigates two main research questions. The first research question investigates the advantages and disadvantages of different matching strategies that can be pursued with multilevel data…
Descriptors: Educational Research, Research Methodology, Observation, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
West, Stephen G.; Thoemmes, Felix – Psychological Methods, 2010
Donald Campbell's approach to causal inference (D. T. Campbell, 1957; W. R. Shadish, T. D. Cook, & D. T. Campbell, 2002) is widely used in psychology and education, whereas Donald Rubin's causal model (P. W. Holland, 1986; D. B. Rubin, 1974, 2005) is widely used in economics, statistics, medicine, and public health. Campbell's approach focuses on…
Descriptors: Causal Models, Research Methodology, Validity, Inferences
Peer reviewed Peer reviewed
Direct linkDirect link
Imbens, Guido W. – Psychological Methods, 2010
In Shadish (2010) and West and Thoemmes (2010), the authors contrasted 2 approaches to causality. The first originated in the psychology literature and is associated with work by Campbell (e.g., Shadish, Cook, & Campbell, 2002), and the second has its roots in the statistics literature and is associated with work by Rubin (e.g., Rubin, 2006). In…
Descriptors: Economics, Research Methodology, Causal Models, Inferences
Peer reviewed Peer reviewed
Direct linkDirect link
Cook, Thomas D.; Steiner, Peter M. – Psychological Methods, 2010
In this article, we note the many ontological, epistemological, and methodological similarities between how Campbell and Rubin conceptualize causation. We then explore 3 differences in their written emphases about individual case matching in observational studies. We contend that (a) Campbell places greater emphasis than Rubin on the special role…
Descriptors: Research Methodology, Pretests Posttests, Data Analysis, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Freedman, David A. – Evaluation Review, 2006
Experiments offer more reliable evidence on causation than observational studies, which is not to gainsay the contribution to knowledge from observation. Experiments should be analyzed as experiments, not as observational studies. A simple comparison of rates might be just the right tool, with little value added by "sophisticated" models. This…
Descriptors: Experiments, Control Groups, Inferences, Comparative Analysis