Publication Date
In 2025 | 0 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 8 |
Since 2016 (last 10 years) | 25 |
Since 2006 (last 20 years) | 39 |
Descriptor
Multivariate Analysis | 87 |
Research Problems | 87 |
Research Methodology | 39 |
Statistical Analysis | 29 |
Data Analysis | 21 |
Error of Measurement | 20 |
Computation | 14 |
Correlation | 14 |
Educational Research | 14 |
Models | 13 |
Regression (Statistics) | 13 |
More ▼ |
Source
Author
Thompson, Bruce | 4 |
Little, Todd D. | 3 |
Blackwell, Matthew | 2 |
Dung Pham | 2 |
Gottlieb, Gilbert | 2 |
Honaker, James | 2 |
Jessaca Spybrook | 2 |
Jia, Fan | 2 |
King, Gary | 2 |
McNeish, Daniel | 2 |
McNeish, Daniel M. | 2 |
More ▼ |
Publication Type
Education Level
Higher Education | 2 |
Adult Education | 1 |
Postsecondary Education | 1 |
Secondary Education | 1 |
Audience
Researchers | 14 |
Practitioners | 1 |
Teachers | 1 |
Location
Australia | 2 |
Netherlands | 2 |
Belgium | 1 |
Canada | 1 |
France | 1 |
Germany | 1 |
Italy | 1 |
Massachusetts | 1 |
Spain | 1 |
Sweden | 1 |
United Kingdom (England) | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Schools and Staffing Survey… | 1 |
Wechsler Intelligence Scale… | 1 |
What Works Clearinghouse Rating
Gamon Savatsomboon; Phamornpun Yurayat; Ong-art Chanprasitchai; Warawut Narkbunnum; Jibon Kumar Sharma; Surapol Svetsomboon – Journal of Practical Studies in Education, 2024
The paper has three major objectives. The first objective of the paper is to synthesize and define common categories of meta-analysis. The second objective is to propose a way to comprehend these common categories of meta-analysis through learning from their respective generic conceptual frameworks. The third objective is to point out which R…
Descriptors: Classification, Meta Analysis, Computer Software, Educational Research
Joseph Taylor; Dung Pham; Paige Whitney; Jonathan Hood; Lamech Mbise; Qi Zhang; Jessaca Spybrook – Society for Research on Educational Effectiveness, 2023
Background: Power analyses for a cluster-randomized trial (CRT) require estimates of additional design parameters beyond those needed for an individually randomized trial. In a 2-level CRT, there are two sample sizes, the number of clusters and the number of individuals per cluster. The intraclass correlation (ICC), or the proportion of variance…
Descriptors: Statistical Analysis, Multivariate Analysis, Randomized Controlled Trials, Research Design
Wei Li; Yanli Xie; Dung Pham; Nianbo Dong; Jessaca Spybrook; Benjamin Kelcey – Asia Pacific Education Review, 2024
Cluster randomized trials (CRTs) are commonly used to evaluate the causal effects of educational interventions, where the entire clusters (e.g., schools) are randomly assigned to treatment or control conditions. This study introduces statistical methods for designing and analyzing two-level (e.g., students nested within schools) and three-level…
Descriptors: Research Design, Multivariate Analysis, Randomized Controlled Trials, Hierarchical Linear Modeling
Seo, Michael; Furukawa, Toshi A.; Karyotaki, Eirini; Efthimiou, Orestis – Research Synthesis Methods, 2023
Clinical prediction models are widely used in modern clinical practice. Such models are often developed using individual patient data (IPD) from a single study, but often there are IPD available from multiple studies. This allows using meta-analytical methods for developing prediction models, increasing power and precision. Different studies,…
Descriptors: Prediction, Models, Patients, Data Analysis
Huang, Francis L. – Gifted Child Quarterly, 2020
Multivariate analysis of variance (MANOVA) is a statistical procedure commonly used in fields such as education and psychology. However, MANOVA's popularity may actually be for the wrong reasons. The large majority of published research using MANOVA focus on univariate research questions rather than on the multivariate questions that MANOVA is…
Descriptors: Multivariate Analysis, Research Methodology, Research Problems, Statistical Analysis
Grund, Simon; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2023
Multiple imputation (MI) is a popular method for handling missing data. In education research, it can be challenging to use MI because the data often have a clustered structure that need to be accommodated during MI. Although much research has considered applications of MI in hierarchical data, little is known about its use in cross-classified…
Descriptors: Educational Research, Data Analysis, Error of Measurement, Computation

Dongho Shin – Grantee Submission, 2024
We consider Bayesian estimation of a hierarchical linear model (HLM) from small sample sizes. The continuous response Y and covariates C are partially observed and assumed missing at random. With C having linear effects, the HLM may be efficiently estimated by available methods. When C includes cluster-level covariates having interactive or other…
Descriptors: Bayesian Statistics, Computation, Hierarchical Linear Modeling, Data Analysis
Jaki, Thomas; Kim, Minjung; Lamont, Andrea; George, Melissa; Chang, Chi; Feaster, Daniel; Van Horn, M. Lee – Educational and Psychological Measurement, 2019
Regression mixture models are a statistical approach used for estimating heterogeneity in effects. This study investigates the impact of sample size on regression mixture's ability to produce "stable" results. Monte Carlo simulations and analysis of resamples from an application data set were used to illustrate the types of problems that…
Descriptors: Sample Size, Computation, Regression (Statistics), Reliability
Luo, Wen; Li, Haoran; Baek, Eunkyeng; Chen, Siqi; Lam, Kwok Hap; Semma, Brandie – Review of Educational Research, 2021
Multilevel modeling (MLM) is a statistical technique for analyzing clustered data. Despite its long history, the technique and accompanying computer programs are rapidly evolving. Given the complexity of multilevel models, it is crucial for researchers to provide complete and transparent descriptions of the data, statistical analyses, and results.…
Descriptors: Hierarchical Linear Modeling, Multivariate Analysis, Prediction, Research Problems
Luke Keele; Matthew Lenard; Lindsay Page – Annenberg Institute for School Reform at Brown University, 2021
In education settings, treatments are often non-randomly assigned to clusters, such as schools or classrooms, while outcomes are measured for students. This research design is called the clustered observational study (COS). We examine the consequences of common support violations in the COS context. Common support violations occur when the…
Descriptors: Cluster Grouping, Educational Environment, Outcomes of Treatment, Compliance (Psychology)
Lin, Lifeng; Chu, Haitao – Research Synthesis Methods, 2018
In medical sciences, a disease condition is typically associated with multiple risk and protective factors. Although many studies report results of multiple factors, nearly all meta-analyses separately synthesize the association between each factor and the disease condition of interest. The collected studies usually report different subsets of…
Descriptors: Bayesian Statistics, Multivariate Analysis, Meta Analysis, Correlation
Chang, Wanchen; Pituch, Keenan A. – Journal of Experimental Education, 2019
When data for multiple outcomes are collected in a multilevel design, researchers can select a univariate or multivariate analysis to examine group-mean differences. When correlated outcomes are incomplete, a multivariate multilevel model (MVMM) may provide greater power than univariate multilevel models (MLMs). For a two-group multilevel design…
Descriptors: Hierarchical Linear Modeling, Multivariate Analysis, Research Problems, Error of Measurement
Abascal, Elena; Díaz De Rada, Vidal; García Lautre, Ignacio; Landaluce, M. Isabel – International Journal of Social Research Methodology, 2018
In the field of social sciences, certain tasks, such as the identification of typologies and the characterization of groups of individuals according to a set of questions, tend to pose a challenge for researchers. Further complications arise if the chosen rating scale is from 0 to 10, since the responses can be treated either as metric or…
Descriptors: Social Science Research, Research Problems, Rating Scales, Factor Analysis
Nimon, Kim; Zientek, Linda Reichwein; Kraha, Amanda – International Journal of Adult Vocational Education and Technology, 2016
Multivariate techniques are increasingly popular as researchers attempt to accurately model a complex world. MANOVA is a multivariate technique used to investigate the dimensions along which groups differ, and how these dimensions may be used to predict group membership. A concern in a MANOVA analysis is to determine if a smaller subset of…
Descriptors: Multivariate Analysis, Research Problems, Statistical Analysis, Computer Software
Smith, Kendal N.; Lamb, Kristen N.; Henson, Robin K. – Gifted Child Quarterly, 2020
Multivariate analysis of variance (MANOVA) is a statistical method used to examine group differences on multiple outcomes. This article reports results of a review of MANOVA in gifted education journals between 2011 and 2017 (N = 56). Findings suggest a number of conceptual and procedural misunderstandings about the nature of MANOVA and its…
Descriptors: Multivariate Analysis, Academically Gifted, Gifted Education, Educational Research