NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Mair, Patrick; Satorra, Albert; Bentler, Peter M. – Multivariate Behavioral Research, 2012
This article develops a procedure based on copulas to simulate multivariate nonnormal data that satisfy a prespecified variance-covariance matrix. The covariance matrix used can comply with a specific moment structure form (e.g., a factor analysis or a general structural equation model). Thus, the method is particularly useful for Monte Carlo…
Descriptors: Structural Equation Models, Data, Monte Carlo Methods, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Tong, Xiaoxiao; Bentler, Peter M. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Recently a new mean scaled and skewness adjusted test statistic was developed for evaluating structural equation models in small samples and with potentially nonnormal data, but this statistic has received only limited evaluation. The performance of this statistic is compared to normal theory maximum likelihood and 2 well-known robust test…
Descriptors: Structural Equation Models, Maximum Likelihood Statistics, Robustness (Statistics), Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Lin, Johnny; Bentler, Peter M. – Multivariate Behavioral Research, 2012
Goodness-of-fit testing in factor analysis is based on the assumption that the test statistic is asymptotically chi-square, but this property may not hold in small samples even when the factors and errors are normally distributed in the population. Robust methods such as Browne's (1984) asymptotically distribution-free method and Satorra Bentler's…
Descriptors: Factor Analysis, Statistical Analysis, Scaling, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan, Ke-Hai; Bentler, Peter M. – Psychometrika, 2006
An extension of multiple correspondence analysis is proposed that takes into account cluster-level heterogeneity in respondents' preferences/choices. The method involves combining multiple correspondence analysis and k-means in a unified framework. The former is used for uncovering a low-dimensional space of multivariate categorical variables…
Descriptors: Robustness (Statistics), Statistics, Item Response Theory
Peer reviewed Peer reviewed
Yuan, Ke-Hai; Bentler, Peter M. – Psychometrika, 2000
Adapts robust schemes to mean and covariance structures, providing an iteratively reweighted least squares approach to robust structural equation modeling. Each case is weighted according to its distance, based on first and second order moments. Test statistics and standard error estimators are given. (SLD)
Descriptors: Least Squares Statistics, Robustness (Statistics), Structural Equation Models
Peer reviewed Peer reviewed
Yuan, Ke-Hai; Bentler, Peter M. – Psychometrika, 2002
Examined the asymptotic distributions of three reliability coefficient estimates: (1) sample coefficient alpha; (2) reliability estimate of a composite score following factor analysis; and (3) maximal reliability of a linear combination of item scores after factor analysis. Findings show that normal theory based asymptotic distributions for these…
Descriptors: Estimation (Mathematics), Factor Analysis, Reliability, Robustness (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan, Ke-Hai; Bentler, Peter M.; Chan, Wai – Psychometrika, 2004
Data in social and behavioral sciences typically possess heavy tails. Structural equation modeling is commonly used in analyzing interrelations among variables of such data. Classical methods for structural equation modeling fit a proposed model to the sample covariance matrix, which can lead to very inefficient parameter estimates. By fitting a…
Descriptors: Structural Equation Models, Statistical Distributions, Evaluation Methods, Data Analysis