NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Journal of Educational and…29
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 29 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Daniel Koretz – Journal of Educational and Behavioral Statistics, 2024
A critically important balance in educational measurement between practical concerns and matters of technique has atrophied in recent decades, and as a result, some important issues in the field have not been adequately addressed. I start with the work of E. F. Lindquist, who exemplified the balance that is now wanting. Lindquist was arguably the…
Descriptors: Educational Assessment, Evaluation Methods, Achievement Tests, Educational History
Peer reviewed Peer reviewed
Direct linkDirect link
Vembye, Mikkel Helding; Pustejovsky, James Eric; Pigott, Therese Deocampo – Journal of Educational and Behavioral Statistics, 2023
Meta-analytic models for dependent effect sizes have grown increasingly sophisticated over the last few decades, which has created challenges for a priori power calculations. We introduce power approximations for tests of average effect sizes based upon several common approaches for handling dependent effect sizes. In a Monte Carlo simulation, we…
Descriptors: Meta Analysis, Robustness (Statistics), Statistical Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Wallin, Gabriel; Wiberg, Marie – Journal of Educational and Behavioral Statistics, 2023
This study explores the usefulness of covariates on equating test scores from nonequivalent test groups. The covariates are captured by an estimated propensity score, which is used as a proxy for latent ability to balance the test groups. The objective is to assess the sensitivity of the equated scores to various misspecifications in the…
Descriptors: Models, Error of Measurement, Robustness (Statistics), Equated Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Youmi Suk – Journal of Educational and Behavioral Statistics, 2024
Machine learning (ML) methods for causal inference have gained popularity due to their flexibility to predict the outcome model and the propensity score. In this article, we provide a within-group approach for ML-based causal inference methods in order to robustly estimate average treatment effects in multilevel studies when there is cluster-level…
Descriptors: Artificial Intelligence, Causal Models, Statistical Inference, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Shiyu; Xiao, Houping; Cohen, Allan – Journal of Educational and Behavioral Statistics, 2021
An adaptive weight estimation approach is proposed to provide robust latent ability estimation in computerized adaptive testing (CAT) with response revision. This approach assigns different weights to each distinct response to the same item when response revision is allowed in CAT. Two types of weight estimation procedures, nonfunctional and…
Descriptors: Computer Assisted Testing, Adaptive Testing, Computation, Robustness (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Suk, Youmi; Steiner, Peter M.; Kim, Jee-Seon; Kang, Hyunseung – Journal of Educational and Behavioral Statistics, 2022
Regression discontinuity (RD) designs are commonly used for program evaluation with continuous treatment assignment variables. But in practice, treatment assignment is frequently based on ordinal variables. In this study, we propose an RD design with an ordinal running variable to assess the effects of extended time accommodations (ETA) for…
Descriptors: Regression (Statistics), Program Evaluation, Research Design, English Language Learners
Peer reviewed Peer reviewed
Direct linkDirect link
Erps, Ryan C.; Noguchi, Kimihiro – Journal of Educational and Behavioral Statistics, 2020
A new two-sample test for comparing variability measures is proposed. To make the test robust and powerful, a new modified structural zero removal method is applied to the Brown-Forsythe transformation. The t-test-based statistic allows results to be expressed as the ratio of mean absolute deviations from median. Extensive simulation study…
Descriptors: Statistical Analysis, Comparative Analysis, Robustness (Statistics), Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Kleinke, Kristian – Journal of Educational and Behavioral Statistics, 2017
Predictive mean matching (PMM) is a standard technique for the imputation of incomplete continuous data. PMM imputes an actual observed value, whose predicted value is among a set of k = 1 values (the so-called donor pool), which are closest to the one predicted for the missing case. PMM is usually better able to preserve the original distribution…
Descriptors: Statistical Analysis, Statistical Distributions, Robustness (Statistics), Sample Size
Sales, Adam C.; Hansen, Ben B. – Journal of Educational and Behavioral Statistics, 2020
Conventionally, regression discontinuity analysis contrasts a univariate regression's limits as its independent variable, "R," approaches a cut point, "c," from either side. Alternative methods target the average treatment effect in a small region around "c," at the cost of an assumption that treatment assignment,…
Descriptors: Regression (Statistics), Computation, Statistical Inference, Robustness (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Ranger, Jochen; Kuhn, Jörg-Tobias – Journal of Educational and Behavioral Statistics, 2018
Diffusion-based item response theory models for responses and response times in tests have attracted increased attention recently in psychometrics. Analyzing response time data, however, is delicate as response times are often contaminated by unusual observations. This can have serious effects on the validity of statistical inference. In this…
Descriptors: Item Response Theory, Computation, Robustness (Statistics), Reaction Time
Thoemmes, Felix; Liao, Wang; Jin, Ze – Journal of Educational and Behavioral Statistics, 2017
This article describes the analysis of regression-discontinuity designs (RDDs) using the R packages rdd, rdrobust, and rddtools. We discuss similarities and differences between these packages and provide directions on how to use them effectively. We use real data from the Carolina Abecedarian Project to show how an analysis of an RDD can be…
Descriptors: Regression (Statistics), Research Design, Robustness (Statistics), Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Talloen, Wouter; Moerkerke, Beatrijs; Loeys, Tom; De Naeghel, Jessie; Van Keer, Hilde; Vansteelandt, Stijn – Journal of Educational and Behavioral Statistics, 2016
To assess the direct and indirect effect of an intervention, multilevel 2-1-1 studies with intervention randomized at the upper (class) level and mediator and outcome measured at the lower (student) level are frequently used in educational research. In such studies, the mediation process may flow through the student-level mediator (the within…
Descriptors: Intervention, Hierarchical Linear Modeling, Computation, Randomized Controlled Trials
Peer reviewed Peer reviewed
Direct linkDirect link
Hedges, Larry V.; Borenstein, Michael – Journal of Educational and Behavioral Statistics, 2014
The precision of estimates of treatment effects in multilevel experiments depends on the sample sizes chosen at each level. It is often desirable to choose sample sizes at each level to obtain the smallest variance for a fixed total cost, that is, to obtain optimal sample allocation. This article extends previous results on optimal allocation to…
Descriptors: Experiments, Research Design, Sample Size, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Le, Thu; Bolt, Daniel; Camburn, Eric; Goff, Peter; Rohe, Karl – Journal of Educational and Behavioral Statistics, 2017
Classroom interactions between students and teachers form a two-way or dyadic network. Measurements such as days absent, test scores, student ratings, or student grades can indicate the "quality" of the interaction. Together with the underlying bipartite graph, these values create a valued student-teacher dyadic interaction network. To…
Descriptors: Teacher Student Relationship, Factor Analysis, Networks, Interaction
Peer reviewed Peer reviewed
Direct linkDirect link
Grabovsky, Irina; Wainer, Howard – Journal of Educational and Behavioral Statistics, 2017
In this essay, we describe the construction and use of the Cut-Score Operating Function in aiding standard setting decisions. The Cut-Score Operating Function shows the relation between the cut-score chosen and the consequent error rate. It allows error rates to be defined by multiple loss functions and will show the behavior of each loss…
Descriptors: Cutting Scores, Standard Setting (Scoring), Decision Making, Error Patterns
Previous Page | Next Page »
Pages: 1  |  2