NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 52 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Rrita Zejnullahi; Larry V. Hedges – Research Synthesis Methods, 2024
Conventional random-effects models in meta-analysis rely on large sample approximations instead of exact small sample results. While random-effects methods produce efficient estimates and confidence intervals for the summary effect have correct coverage when the number of studies is sufficiently large, we demonstrate that conventional methods…
Descriptors: Robustness (Statistics), Meta Analysis, Sample Size, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Bartoš, František; Maier, Maximilian; Wagenmakers, Eric-Jan; Doucouliagos, Hristos; Stanley, T. D. – Research Synthesis Methods, 2023
Publication bias is a ubiquitous threat to the validity of meta-analysis and the accumulation of scientific evidence. In order to estimate and counteract the impact of publication bias, multiple methods have been developed; however, recent simulation studies have shown the methods' performance to depend on the true data generating process, and no…
Descriptors: Robustness (Statistics), Bayesian Statistics, Meta Analysis, Publications
Peer reviewed Peer reviewed
Direct linkDirect link
Maxi Schulz; Malte Kramer; Oliver Kuss; Tim Mathes – Research Synthesis Methods, 2024
In sparse data meta-analyses (with few trials or zero events), conventional methods may distort results. Although better-performing one-stage methods have become available in recent years, their implementation remains limited in practice. This study examines the impact of using conventional methods compared to one-stage models by re-analysing…
Descriptors: Meta Analysis, Data Analysis, Research Methodology, Research Problems
Peer reviewed Peer reviewed
Direct linkDirect link
Timo Gnambs; Ulrich Schroeders – Research Synthesis Methods, 2024
Meta-analyses of treatment effects in randomized control trials are often faced with the problem of missing information required to calculate effect sizes and their sampling variances. Particularly, correlations between pre- and posttest scores are frequently not available. As an ad-hoc solution, researchers impute a constant value for the missing…
Descriptors: Accuracy, Meta Analysis, Randomized Controlled Trials, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Maya B. Mathur – Research Synthesis Methods, 2024
As traditionally conceived, publication bias arises from selection operating on a collection of individually unbiased estimates. A canonical form of such selection across studies (SAS) is the preferential publication of affirmative studies (i.e., those with significant, positive estimates) versus nonaffirmative studies (i.e., those with…
Descriptors: Meta Analysis, Research Reports, Research Methodology, Research Problems
Peer reviewed Peer reviewed
Direct linkDirect link
Jansen, Katrin; Holling, Heinz – Research Synthesis Methods, 2023
In meta-analyses of rare events, it can be challenging to obtain a reliable estimate of the pooled effect, in particular when the meta-analysis is based on a small number of studies. Recent simulation studies have shown that the beta-binomial model is a promising candidate in this situation, but have thus far only investigated its performance in a…
Descriptors: Bayesian Statistics, Meta Analysis, Probability, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
van Aert, Robbie C. M. – Research Synthesis Methods, 2023
The partial correlation coefficient (PCC) is used to quantify the linear relationship between two variables while taking into account/controlling for other variables. Researchers frequently synthesize PCCs in a meta-analysis, but two of the assumptions of the common equal-effect and random-effects meta-analysis model are by definition violated.…
Descriptors: Correlation, Meta Analysis, Sampling, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Vembye, Mikkel Helding; Pustejovsky, James Eric; Pigott, Therese Deocampo – Journal of Educational and Behavioral Statistics, 2023
Meta-analytic models for dependent effect sizes have grown increasingly sophisticated over the last few decades, which has created challenges for a priori power calculations. We introduce power approximations for tests of average effect sizes based upon several common approaches for handling dependent effect sizes. In a Monte Carlo simulation, we…
Descriptors: Meta Analysis, Robustness (Statistics), Statistical Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Domínguez Islas, Clara; Rice, Kenneth M. – Research Synthesis Methods, 2022
Bayesian methods seem a natural choice for combining sources of evidence in meta-analyses. However, in practice, their sensitivity to the choice of prior distribution is much less attractive, particularly for parameters describing heterogeneity. A recent non-Bayesian approach to fixed-effects meta-analysis provides novel ways to think about…
Descriptors: Bayesian Statistics, Evidence, Meta Analysis, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Selcuk Acar; Lindsay E. Lee; Jaret Hodges – Creativity Research Journal, 2023
Numerous primary studies and a recent meta-analytic confirmatory factor analysis (Meta-CFA; Said-Metwaly, Fernández-Castilla, Kyndt, & Van den Noortgate, 2018) have shown that Torrance Tests of Creative Thinking -- Figural (TTCT-F) consists of two factors. However, recent research has raised questions regarding factor analysis of the TTCT-F…
Descriptors: Creativity, Creative Thinking, Creativity Tests, Factor Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Edoardo G. Ostinelli; Orestis Efthimiou; Yan Luo; Clara Miguel; Eirini Karyotaki; Pim Cuijpers; Toshi A. Furukawa; Georgia Salanti; Andrea Cipriani – Research Synthesis Methods, 2024
When studies use different scales to measure continuous outcomes, standardised mean differences (SMD) are required to meta-analyse the data. However, outcomes are often reported as endpoint or change from baseline scores. Combining corresponding SMDs can be problematic and available guidance advises against this practice. We aimed to examine the…
Descriptors: Network Analysis, Meta Analysis, Depression (Psychology), Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Hartwig, Fernando P.; Davey Smith, George; Schmidt, Amand F.; Sterne, Jonathan A. C.; Higgins, Julian P. T.; Bowden, Jack – Research Synthesis Methods, 2020
Meta-analyses based on systematic literature reviews are commonly used to obtain a quantitative summary of the available evidence on a given topic. However, the reliability of any meta-analysis is constrained by that of its constituent studies. One major limitation is the possibility of small-study effects, when estimates from smaller and larger…
Descriptors: Meta Analysis, Research Methodology, Effect Size, Robustness (Statistics)
Jamshidi, Laleh; Declercq, Lies; Fernández-Castilla, Belén; Ferron, John M.; Moeyaert, Mariola; Beretvas, S. Natasha; Van den Noortgate, Wim – Grantee Submission, 2020
The focus of the current study is on handling the dependence among multiple regression coefficients representing the treatment effects when meta-analyzing data from single-case experimental studies. We compare the results when applying three different multilevel meta-analytic models (i.e., a univariate multilevel model avoiding the dependence, a…
Descriptors: Multivariate Analysis, Hierarchical Linear Modeling, Meta Analysis, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Mavridis, Dimitris; Moustaki, Irini; Wall, Melanie; Salanti, Georgia – Research Synthesis Methods, 2017
When considering data from many trials, it is likely that some of them present a markedly different intervention effect or exert an undue influence on the summary results. We develop a forward search algorithm for identifying outlying and influential studies in meta-analysis models. The forward search algorithm starts by fitting the hypothesized…
Descriptors: Research Reports, Regression (Statistics), Meta Analysis, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Moeyaert, Mariola; Ugille, Maaike; Natasha Beretvas, S.; Ferron, John; Bunuan, Rommel; Van den Noortgate, Wim – International Journal of Social Research Methodology, 2017
This study investigates three methods to handle dependency among effect size estimates in meta-analysis arising from studies reporting multiple outcome measures taken on the same sample. The three-level approach is compared with the method of robust variance estimation, and with averaging effects within studies. A simulation study is performed,…
Descriptors: Meta Analysis, Effect Size, Robustness (Statistics), Hierarchical Linear Modeling
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4