Publication Date
In 2025 | 2 |
Since 2024 | 8 |
Since 2021 (last 5 years) | 15 |
Since 2016 (last 10 years) | 28 |
Since 2006 (last 20 years) | 53 |
Descriptor
Robustness (Statistics) | 83 |
Sample Size | 83 |
Simulation | 24 |
Statistical Analysis | 22 |
Error of Measurement | 20 |
Comparative Analysis | 18 |
Monte Carlo Methods | 18 |
Statistical Distributions | 16 |
Estimation (Mathematics) | 14 |
Effect Size | 13 |
Multivariate Analysis | 13 |
More ▼ |
Source
Author
Publication Type
Education Level
Higher Education | 3 |
Secondary Education | 3 |
Elementary Education | 2 |
High Schools | 2 |
Junior High Schools | 2 |
Middle Schools | 2 |
Adult Education | 1 |
Grade 10 | 1 |
Grade 12 | 1 |
Grade 5 | 1 |
Grade 8 | 1 |
More ▼ |
Audience
Researchers | 2 |
Teachers | 1 |
Location
California | 2 |
China | 1 |
Egypt | 1 |
Gaza Strip | 1 |
North Carolina | 1 |
Texas | 1 |
Laws, Policies, & Programs
No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
National Assessment of… | 1 |
Program for International… | 1 |
What Works Clearinghouse Rating
Meets WWC Standards without Reservations | 1 |
Meets WWC Standards with or without Reservations | 1 |
Rrita Zejnullahi; Larry V. Hedges – Research Synthesis Methods, 2024
Conventional random-effects models in meta-analysis rely on large sample approximations instead of exact small sample results. While random-effects methods produce efficient estimates and confidence intervals for the summary effect have correct coverage when the number of studies is sufficiently large, we demonstrate that conventional methods…
Descriptors: Robustness (Statistics), Meta Analysis, Sample Size, Computation
Zuchao Shen; Walter Leite; Huibin Zhang; Jia Quan; Huan Kuang – Journal of Experimental Education, 2025
When designing cluster-randomized trials (CRTs), one important consideration is determining the proper sample sizes across levels and treatment conditions to cost-efficiently achieve adequate statistical power. This consideration is usually addressed in an optimal design framework by leveraging the cost structures of sampling and optimizing the…
Descriptors: Randomized Controlled Trials, Feasibility Studies, Research Design, Sample Size
Ismail Cuhadar; Ömür Kaya Kalkan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Simulation studies are needed to investigate how many score categories are sufficient to treat ordered categorical data as continuous, particularly for bifactor models. The current simulation study aims to address such needs by investigating the performance of estimation methods in the bifactor models with ordered categorical data. Results support…
Descriptors: Predictor Variables, Structural Equation Models, Sample Size, Evaluation Methods
Jansen, Katrin; Holling, Heinz – Research Synthesis Methods, 2023
In meta-analyses of rare events, it can be challenging to obtain a reliable estimate of the pooled effect, in particular when the meta-analysis is based on a small number of studies. Recent simulation studies have shown that the beta-binomial model is a promising candidate in this situation, but have thus far only investigated its performance in a…
Descriptors: Bayesian Statistics, Meta Analysis, Probability, Simulation
Christine E. DeMars; Paulius Satkus – Educational and Psychological Measurement, 2024
Marginal maximum likelihood, a common estimation method for item response theory models, is not inherently a Bayesian procedure. However, due to estimation difficulties, Bayesian priors are often applied to the likelihood when estimating 3PL models, especially with small samples. Little focus has been placed on choosing the priors for marginal…
Descriptors: Item Response Theory, Statistical Distributions, Error of Measurement, Bayesian Statistics
Duane Knudson – Measurement in Physical Education and Exercise Science, 2025
Small sample sizes contribute to several problems in research and knowledge advancement. This conceptual replication study confirmed and extended the inflation of type II errors and confidence intervals in correlation analyses of small sample sizes common in kinesiology/exercise science. Current population data (N = 18, 230, & 464) on four…
Descriptors: Kinesiology, Exercise, Biomechanics, Movement Education
Hyunjung Lee; Heining Cham – Educational and Psychological Measurement, 2024
Determining the number of factors in exploratory factor analysis (EFA) is crucial because it affects the rest of the analysis and the conclusions of the study. Researchers have developed various methods for deciding the number of factors to retain in EFA, but this remains one of the most difficult decisions in the EFA. The purpose of this study is…
Descriptors: Factor Structure, Factor Analysis, Monte Carlo Methods, Goodness of Fit
Mikkel Helding Vembye; James Eric Pustejovsky; Therese Deocampo Pigott – Research Synthesis Methods, 2024
Sample size and statistical power are important factors to consider when planning a research synthesis. Power analysis methods have been developed for fixed effect or random effects models, but until recently these methods were limited to simple data structures with a single, independent effect per study. Recent work has provided power…
Descriptors: Sample Size, Robustness (Statistics), Effect Size, Social Science Research
Edelsbrunner, Peter A.; Flaig, Maja; Schneider, Michael – Journal of Research on Educational Effectiveness, 2023
Latent transition analysis is an informative statistical tool for depicting heterogeneity in learning as latent profiles. We present a Monte Carlo simulation study to guide researchers in selecting fit indices for identifying the correct number of profiles. We simulated data representing profiles of learners within a typical pre- post- follow…
Descriptors: Learning Processes, Profiles, Monte Carlo Methods, Bayesian Statistics
Du, Han; Enders, Craig; Keller, Brian; Bradbury, Thomas N.; Karney, Benjamin R. – Grantee Submission, 2022
Missing data are exceedingly common across a variety of disciplines, such as educational, social, and behavioral science areas. Missing not at random (MNAR) mechanism where missingness is related to unobserved data is widespread in real data and has detrimental consequence. However, the existing MNAR-based methods have potential problems such as…
Descriptors: Bayesian Statistics, Data Analysis, Computer Simulation, Sample Size
Bogaert, Jasper; Loh, Wen Wei; Rosseel, Yves – Educational and Psychological Measurement, 2023
Factor score regression (FSR) is widely used as a convenient alternative to traditional structural equation modeling (SEM) for assessing structural relations between latent variables. But when latent variables are simply replaced by factor scores, biases in the structural parameter estimates often have to be corrected, due to the measurement error…
Descriptors: Factor Analysis, Regression (Statistics), Structural Equation Models, Error of Measurement
Shi, Dexin; DiStefano, Christine; Zheng, Xiaying; Liu, Ren; Jiang, Zhehan – International Journal of Behavioral Development, 2021
This study investigates the performance of robust maximum likelihood (ML) estimators when fitting and evaluating small sample latent growth models with non-normal missing data. Results showed that the robust ML methods could be used to account for non-normality even when the sample size is very small (e.g., N < 100). Among the robust ML…
Descriptors: Growth Models, Maximum Likelihood Statistics, Factor Analysis, Sample Size
Shin, Myungho; No, Unkyung; Hong, Sehee – Educational and Psychological Measurement, 2019
The present study aims to compare the robustness under various conditions of latent class analysis mixture modeling approaches that deal with auxiliary distal outcomes. Monte Carlo simulations were employed to test the performance of four approaches recommended by previous simulation studies: maximum likelihood (ML) assuming homoskedasticity…
Descriptors: Robustness (Statistics), Multivariate Analysis, Maximum Likelihood Statistics, Statistical Distributions
Lu, Ru; Guo, Hongwen; Dorans, Neil J. – ETS Research Report Series, 2021
Two families of analysis methods can be used for differential item functioning (DIF) analysis. One family is DIF analysis based on observed scores, such as the Mantel-Haenszel (MH) and the standardized proportion-correct metric for DIF procedures; the other is analysis based on latent ability, in which the statistic is a measure of departure from…
Descriptors: Robustness (Statistics), Weighted Scores, Test Items, Item Analysis
Erps, Ryan C.; Noguchi, Kimihiro – Journal of Educational and Behavioral Statistics, 2020
A new two-sample test for comparing variability measures is proposed. To make the test robust and powerful, a new modified structural zero removal method is applied to the Brown-Forsythe transformation. The t-test-based statistic allows results to be expressed as the ratio of mean absolute deviations from median. Extensive simulation study…
Descriptors: Statistical Analysis, Comparative Analysis, Robustness (Statistics), Sample Size