NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 18 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Francesco Innocenti; Math J. J. M. Candel; Frans E. S. Tan; Gerard J. P. van Breukelen – Journal of Educational and Behavioral Statistics, 2024
Normative studies are needed to obtain norms for comparing individuals with the reference population on relevant clinical or educational measures. Norms can be obtained in an efficient way by regressing the test score on relevant predictors, such as age and sex. When several measures are normed with the same sample, a multivariate regression-based…
Descriptors: Sample Size, Multivariate Analysis, Error of Measurement, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Schochet, Peter Z. – Journal of Educational and Behavioral Statistics, 2022
This article develops new closed-form variance expressions for power analyses for commonly used difference-in-differences (DID) and comparative interrupted time series (CITS) panel data estimators. The main contribution is to incorporate variation in treatment timing into the analysis. The power formulas also account for other key design features…
Descriptors: Comparative Analysis, Statistical Analysis, Sample Size, Measurement Techniques
Shear, Benjamin R.; Reardon, Sean F. – Journal of Educational and Behavioral Statistics, 2021
This article describes an extension to the use of heteroskedastic ordered probit (HETOP) models to estimate latent distributional parameters from grouped, ordered-categorical data by pooling across multiple waves of data. We illustrate the method with aggregate proficiency data reporting the number of students in schools or districts scoring in…
Descriptors: Statistical Analysis, Computation, Regression (Statistics), Sample Size
Reardon, Sean F.; Kalogrides, Demetra; Ho, Andrew D. – Journal of Educational and Behavioral Statistics, 2021
Linking score scales across different tests is considered speculative and fraught, even at the aggregate level. We introduce and illustrate validation methods for aggregate linkages, using the challenge of linking U.S. school district average test scores across states as a motivating example. We show that aggregate linkages can be validated both…
Descriptors: Equated Scores, Validity, Methods, School Districts
Peer reviewed Peer reviewed
Direct linkDirect link
McCoach, D. Betsy; Rifenbark, Graham G.; Newton, Sarah D.; Li, Xiaoran; Kooken, Janice; Yomtov, Dani; Gambino, Anthony J.; Bellara, Aarti – Journal of Educational and Behavioral Statistics, 2018
This study compared five common multilevel software packages via Monte Carlo simulation: HLM 7, M"plus" 7.4, R (lme4 V1.1-12), Stata 14.1, and SAS 9.4 to determine how the programs differ in estimation accuracy and speed, as well as convergence, when modeling multiple randomly varying slopes of different magnitudes. Simulated data…
Descriptors: Hierarchical Linear Modeling, Computer Software, Comparative Analysis, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Sweet, Tracy M.; Junker, Brian W. – Journal of Educational and Behavioral Statistics, 2016
The hierarchical network model (HNM) is a framework introduced by Sweet, Thomas, and Junker for modeling interventions and other covariate effects on ensembles of social networks, such as what would be found in randomized controlled trials in education research. In this article, we develop calculations for the power to detect an intervention…
Descriptors: Intervention, Social Networks, Statistical Analysis, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Kelcey, Benjamin; Dong, Nianbo; Spybrook, Jessaca; Cox, Kyle – Journal of Educational and Behavioral Statistics, 2017
Designs that facilitate inferences concerning both the total and indirect effects of a treatment potentially offer a more holistic description of interventions because they can complement "what works" questions with the comprehensive study of the causal connections implied by substantive theories. Mapping the sensitivity of designs to…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Mediation Theory, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Hedges, Larry V. – Journal of Educational and Behavioral Statistics, 2011
Research designs involving cluster randomization are becoming increasingly important in educational and behavioral research. Many of these designs involve two levels of clustering or nesting (students within classes and classes within schools). Researchers would like to compute effect size indexes based on the standardized mean difference to…
Descriptors: Effect Size, Research Design, Experiments, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Fan, Weihua; Hancock, Gregory R. – Journal of Educational and Behavioral Statistics, 2012
This study proposes robust means modeling (RMM) approaches for hypothesis testing of mean differences for between-subjects designs in order to control the biasing effects of nonnormality and variance inequality. Drawing from structural equation modeling (SEM), the RMM approaches make no assumption of variance homogeneity and employ robust…
Descriptors: Robustness (Statistics), Hypothesis Testing, Monte Carlo Methods, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Xiaofeng Steven – Journal of Educational and Behavioral Statistics, 2010
This article provides a way to determine adequate sample size for the confidence interval of covariate-adjusted mean difference in randomized experiments. The standard error of adjusted mean difference depends on covariate variance and balance, which are two unknown quantities at the stage of planning sample size. If covariate observations are…
Descriptors: Sample Size, Computation, Statistical Analysis, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Jinming – Journal of Educational and Behavioral Statistics, 2012
The impact of uncertainty about item parameters on test information functions is investigated. The information function of a test is one of the most important tools in item response theory (IRT). Inaccuracy in the estimation of test information can have substantial consequences on data analyses based on IRT. In this article, the major part (called…
Descriptors: Item Response Theory, Tests, Accuracy, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Longford, Nicholas T. – Journal of Educational and Behavioral Statistics, 2009
We derive an estimator of the standardized value which, under the standard assumptions of normality and homoscedasticity, is more efficient than the established (asymptotically efficient) estimator and discuss its gains for small samples. (Contains 1 table and 3 figures.)
Descriptors: Efficiency, Computation, Statistics, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
DeMars, Christine E. – Journal of Educational and Behavioral Statistics, 2009
The Mantel-Haenszel (MH) and logistic regression (LR) differential item functioning (DIF) procedures have inflated Type I error rates when there are large mean group differences, short tests, and large sample sizes.When there are large group differences in mean score, groups matched on the observed number-correct score differ on true score,…
Descriptors: Regression (Statistics), Test Bias, Error of Measurement, True Scores
Peer reviewed Peer reviewed
Zeng, Lingjia; Cope, Ronald T. – Journal of Educational and Behavioral Statistics, 1995
Large-sample standard errors of linear equating for the counterbalanced design are derived using the general delta method. Computer simulations found that standard errors derived without the normality assumption were more accurate than those derived with the normality assumption in a large sample with moderately skewed score distributions. (SLD)
Descriptors: Computer Simulation, Error of Measurement, Research Design, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
von Davier, Alina A.; Kong, Nan – Journal of Educational and Behavioral Statistics, 2005
This article describes a new, unified framework for linear equating in a non-equivalent groups anchor test (NEAT) design. The authors focus on three methods for linear equating in the NEAT design--Tucker, Levine observed-score, and chain--and develop a common parameterization that shows that each particular equating method is a special case of the…
Descriptors: Equations (Mathematics), Sample Size, Statistical Distributions, Error of Measurement
Previous Page | Next Page ยป
Pages: 1  |  2