NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 18 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ziqian Xu; Fei Gao; Anqi Fa; Wen Qu; Zhiyong Zhang – Grantee Submission, 2024
Conditional process models, including moderated mediation models and mediated moderation models, are widely used in behavioral science research. However, few studies have examined approaches to conduct statistical power analysis for such models and there is also a lack of software packages that provide such power analysis functionalities. In this…
Descriptors: Statistical Analysis, Sample Size, Mediation Theory, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Phillip K. Wood – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The logistic and confined exponential curves are frequently used in studies of growth and learning. These models, which are nonlinear in their parameters, can be estimated using structural equation modeling software. This paper proposes a single combined model, a weighted combination of both models. Mplus, Proc Calis, and lavaan code for the model…
Descriptors: Structural Equation Models, Computation, Computer Software, Weighted Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Kalkan, Ömür Kaya – Measurement: Interdisciplinary Research and Perspectives, 2022
The four-parameter logistic (4PL) Item Response Theory (IRT) model has recently been reconsidered in the literature due to the advances in the statistical modeling software and the recent developments in the estimation of the 4PL IRT model parameters. The current simulation study evaluated the performance of expectation-maximization (EM),…
Descriptors: Comparative Analysis, Sample Size, Test Length, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Ames, Allison J.; Leventhal, Brian C.; Ezike, Nnamdi C. – Measurement: Interdisciplinary Research and Perspectives, 2020
Data simulation and Monte Carlo simulation studies are important skills for researchers and practitioners of educational and psychological measurement, but there are few resources on the topic specific to item response theory. Even fewer resources exist on the statistical software techniques to implement simulation studies. This article presents…
Descriptors: Monte Carlo Methods, Item Response Theory, Simulation, Computer Software
Cain, Meghan K.; Zhang, Zhiyong – Grantee Submission, 2018
Despite its importance to structural equation modeling, model evaluation remains underdeveloped in the Bayesian SEM framework. Posterior predictive p-values (PPP) and deviance information criteria (DIC) are now available in popular software for Bayesian model evaluation, but they remain under-utilized. This is largely due to the lack of…
Descriptors: Bayesian Statistics, Structural Equation Models, Monte Carlo Methods, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Yavuz, Guler; Hambleton, Ronald K. – Educational and Psychological Measurement, 2017
Application of MIRT modeling procedures is dependent on the quality of parameter estimates provided by the estimation software and techniques used. This study investigated model parameter recovery of two popular MIRT packages, BMIRT and flexMIRT, under some common measurement conditions. These packages were specifically selected to investigate the…
Descriptors: Item Response Theory, Models, Comparative Analysis, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
McCoach, D. Betsy; Rifenbark, Graham G.; Newton, Sarah D.; Li, Xiaoran; Kooken, Janice; Yomtov, Dani; Gambino, Anthony J.; Bellara, Aarti – Journal of Educational and Behavioral Statistics, 2018
This study compared five common multilevel software packages via Monte Carlo simulation: HLM 7, M"plus" 7.4, R (lme4 V1.1-12), Stata 14.1, and SAS 9.4 to determine how the programs differ in estimation accuracy and speed, as well as convergence, when modeling multiple randomly varying slopes of different magnitudes. Simulated data…
Descriptors: Hierarchical Linear Modeling, Computer Software, Comparative Analysis, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel M. – Journal of Educational and Behavioral Statistics, 2016
Mixed-effects models (MEMs) and latent growth models (LGMs) are often considered interchangeable save the discipline-specific nomenclature. Software implementations of these models, however, are not interchangeable, particularly with small sample sizes. Restricted maximum likelihood estimation that mitigates small sample bias in MEMs has not been…
Descriptors: Models, Statistical Analysis, Hierarchical Linear Modeling, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Schoeneberger, Jason A. – Journal of Experimental Education, 2016
The design of research studies utilizing binary multilevel models must necessarily incorporate knowledge of multiple factors, including estimation method, variance component size, or number of predictors, in addition to sample sizes. This Monte Carlo study examined the performance of random effect binary outcome multilevel models under varying…
Descriptors: Sample Size, Models, Computation, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Schoemann, Alexander M.; Miller, Patrick; Pornprasertmanit, Sunthud; Wu, Wei – International Journal of Behavioral Development, 2014
Planned missing data designs allow researchers to increase the amount and quality of data collected in a single study. Unfortunately, the effect of planned missing data designs on power is not straightforward. Under certain conditions using a planned missing design will increase power, whereas in other situations using a planned missing design…
Descriptors: Monte Carlo Methods, Simulation, Sample Size, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Henseler, Jorg; Chin, Wynne W. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
In social and business sciences, the importance of the analysis of interaction effects between manifest as well as latent variables steadily increases. Researchers using partial least squares (PLS) to analyze interaction effects between latent variables need an overview of the available approaches as well as their suitability. This article…
Descriptors: Interaction, Least Squares Statistics, Computation, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Yurdugul, Halil – Applied Psychological Measurement, 2009
This article describes SIMREL, a software program designed for the simulation of alpha coefficients and the estimation of its confidence intervals. SIMREL runs on two alternatives. In the first one, if SIMREL is run for a single data file, it performs descriptive statistics, principal components analysis, and variance analysis of the item scores…
Descriptors: Intervals, Monte Carlo Methods, Computer Software, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Herzog, Walter; Boomsma, Anne – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Traditional estimators of fit measures based on the noncentral chi-square distribution (root mean square error of approximation [RMSEA], Steiger's [gamma], etc.) tend to overreject acceptable models when the sample size is small. To handle this problem, it is proposed to employ Bartlett's (1950), Yuan's (2005), or Swain's (1975) correction of the…
Descriptors: Intervals, Sample Size, Monte Carlo Methods, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, Holmes – Applied Psychological Measurement, 2010
The accuracy of item parameter estimates in the multidimensional item response theory (MIRT) model context is one that has not been researched in great detail. This study examines the ability of two confirmatory factor analysis models specifically for dichotomous data to properly estimate item parameters using common formulae for converting factor…
Descriptors: Item Response Theory, Computation, Factor Analysis, Models
Baldwin, Beatrice – 1987
The robustness of LISREL computer program maximum likelihood estimates under specific conditions of model misspecification and sample size was examined. The population model used in this study contains one exogenous variable; three endogenous variables; and eight indicator variables, two for each latent variable. Conditions of model…
Descriptors: Computer Software, Maximum Likelihood Statistics, Monte Carlo Methods, Predictive Measurement
Previous Page | Next Page »
Pages: 1  |  2