NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yanping Pei; Adam Sales; Johann Gagnon-Bartsch – Grantee Submission, 2024
Randomized A/B tests within online learning platforms enable us to draw unbiased causal estimators. However, precise estimates of treatment effects can be challenging due to minimal participation, resulting in underpowered A/B tests. Recent advancements indicate that leveraging auxiliary information from detailed logs and employing design-based…
Descriptors: Randomized Controlled Trials, Learning Management Systems, Causal Models, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Luo, Wen; Li, Haoran; Baek, Eunkyeng; Chen, Siqi; Lam, Kwok Hap; Semma, Brandie – Review of Educational Research, 2021
Multilevel modeling (MLM) is a statistical technique for analyzing clustered data. Despite its long history, the technique and accompanying computer programs are rapidly evolving. Given the complexity of multilevel models, it is crucial for researchers to provide complete and transparent descriptions of the data, statistical analyses, and results.…
Descriptors: Hierarchical Linear Modeling, Multivariate Analysis, Prediction, Research Problems
Peer reviewed Peer reviewed
Direct linkDirect link
Watson, Jane; Chance, Beth – Australian Senior Mathematics Journal, 2012
Formal inference, which makes theoretical assumptions about distributions and applies hypothesis testing procedures with null and alternative hypotheses, is notoriously difficult for tertiary students to master. The debate about whether this content should appear in Years 11 and 12 of the "Australian Curriculum: Mathematics" has gone on…
Descriptors: Foreign Countries, Research Methodology, Sampling, Statistical Inference
Kim, Hyun Seok John – ProQuest LLC, 2011
Cognitive diagnostic assessment (CDA) is a new theoretical framework for psychological and educational testing that is designed to provide detailed information about examinees' strengths and weaknesses in specific knowledge structures and processing skills. During the last three decades, more than a dozen psychometric models have been developed…
Descriptors: Cognitive Measurement, Diagnostic Tests, Bayesian Statistics, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Pratt, Dave; Johnston-Wilder, Peter; Ainley, Janet; Mason, John – Statistics Education Research Journal, 2008
In this reflective paper, we explore students' local and global thinking about informal statistical inference through our observations of 10- to 11-year-olds, challenged to infer the unknown configuration of a virtual die, but able to use the die to generate as much data as they felt necessary. We report how they tended to focus on local changes…
Descriptors: Statistical Inference, Early Adolescents, Interviews, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Mulekar, Madhuri S.; Siegel, Murray H. – Mathematics Teacher, 2009
If students are to understand inferential statistics successfully, they must have a profound understanding of the nature of the sampling distribution. Specifically, they must comprehend the determination of the expected value and standard error of a sampling distribution as well as the meaning of the central limit theorem. Many students in a high…
Descriptors: Statistical Inference, Statistics, Sample Size, Error of Measurement
Churchwell, Don Wesley – ProQuest LLC, 2009
This study examined the relationship between STAR Math gains and TCAP composite scores. The purpose of this study was to determine if there was a significant relationship between STAR Math pretest and posttest gains over the course of the 2005-2006 academic year through the use of the STAR Math software program and TCAP math composite scores at…
Descriptors: Student Needs, Mathematics Achievement, Pretests Posttests, Computer Software