Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 11 |
Descriptor
Effect Size | 13 |
Sample Size | 13 |
Statistical Inference | 13 |
Statistical Analysis | 7 |
Error of Measurement | 6 |
Computation | 5 |
Research Design | 5 |
Research Problems | 5 |
Hypothesis Testing | 4 |
Intervention | 4 |
Statistical Bias | 4 |
More ▼ |
Source
Author
Baek, Eunkyeng | 1 |
Beasley, T. Mark | 1 |
Beretvas, S. Natasha | 1 |
Bloom, Howard S. | 1 |
Bonett, Douglas G. | 1 |
Capraro, Mary Margaret | 1 |
Capraro, Robert M. | 1 |
Chen, Siqi | 1 |
Deke, John | 1 |
Dosser, David A., Jr. | 1 |
Ferron, John M. | 1 |
More ▼ |
Publication Type
Journal Articles | 10 |
Reports - Research | 8 |
Reports - Evaluative | 2 |
Guides - Non-Classroom | 1 |
Information Analyses | 1 |
Numerical/Quantitative Data | 1 |
Opinion Papers | 1 |
Reports - General | 1 |
Speeches/Meeting Papers | 1 |
Education Level
High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Researchers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Luo, Wen; Li, Haoran; Baek, Eunkyeng; Chen, Siqi; Lam, Kwok Hap; Semma, Brandie – Review of Educational Research, 2021
Multilevel modeling (MLM) is a statistical technique for analyzing clustered data. Despite its long history, the technique and accompanying computer programs are rapidly evolving. Given the complexity of multilevel models, it is crucial for researchers to provide complete and transparent descriptions of the data, statistical analyses, and results.…
Descriptors: Hierarchical Linear Modeling, Multivariate Analysis, Prediction, Research Problems
García-Pérez, Miguel A. – Educational and Psychological Measurement, 2017
Null hypothesis significance testing (NHST) has been the subject of debate for decades and alternative approaches to data analysis have been proposed. This article addresses this debate from the perspective of scientific inquiry and inference. Inference is an inverse problem and application of statistical methods cannot reveal whether effects…
Descriptors: Hypothesis Testing, Statistical Inference, Effect Size, Bayesian Statistics
Bloom, Howard S.; Spybrook, Jessaca – Journal of Research on Educational Effectiveness, 2017
Multisite trials, which are being used with increasing frequency in education and evaluation research, provide an exciting opportunity for learning about how the effects of interventions or programs are distributed across sites. In particular, these studies can produce rigorous estimates of a cross-site mean effect of program assignment…
Descriptors: Program Effectiveness, Program Evaluation, Sample Size, Evaluation Research
Weller, Susan C. – Field Methods, 2015
This article presents a simple approach to making quick sample size estimates for basic hypothesis tests. Although there are many sources available for estimating sample sizes, methods are not often integrated across statistical tests, levels of measurement of variables, or effect sizes. A few parameters are required to estimate sample sizes and…
Descriptors: Sample Size, Statistical Analysis, Computation, Hypothesis Testing
Beasley, T. Mark – Journal of Experimental Education, 2014
Increasing the correlation between the independent variable and the mediator ("a" coefficient) increases the effect size ("ab") for mediation analysis; however, increasing a by definition increases collinearity in mediation models. As a result, the standard error of product tests increase. The variance inflation caused by…
Descriptors: Statistical Analysis, Effect Size, Nonparametric Statistics, Statistical Inference
Deke, John; Wei, Thomas; Kautz, Tim – National Center for Education Evaluation and Regional Assistance, 2017
Evaluators of education interventions are increasingly designing studies to detect impacts much smaller than the 0.20 standard deviations that Cohen (1988) characterized as "small." While the need to detect smaller impacts is based on compelling arguments that such impacts are substantively meaningful, the drive to detect smaller impacts…
Descriptors: Intervention, Educational Research, Research Problems, Statistical Bias
Ugille, Maaike; Moeyaert, Mariola; Beretvas, S. Natasha; Ferron, John M.; Van den Noortgate, Wim – Journal of Experimental Education, 2014
A multilevel meta-analysis can combine the results of several single-subject experimental design studies. However, the estimated effects are biased if the effect sizes are standardized and the number of measurement occasions is small. In this study, the authors investigated 4 approaches to correct for this bias. First, the standardized effect…
Descriptors: Effect Size, Statistical Bias, Sample Size, Regression (Statistics)
Fritz, Matthew S.; Taylor, Aaron B.; MacKinnon, David P. – Multivariate Behavioral Research, 2012
Previous studies of different methods of testing mediation models have consistently found two anomalous results. The first result is elevated Type I error rates for the bias-corrected and accelerated bias-corrected bootstrap tests not found in nonresampling tests or in resampling tests that did not include a bias correction. This is of special…
Descriptors: Statistical Analysis, Error of Measurement, Statistical Bias, Sampling
What Works Clearinghouse, 2014
This "What Works Clearinghouse Procedures and Standards Handbook (Version 3.0)" provides a detailed description of the standards and procedures of the What Works Clearinghouse (WWC). The remaining chapters of this Handbook are organized to take the reader through the basic steps that the WWC uses to develop a review protocol, identify…
Descriptors: Educational Research, Guides, Intervention, Classification
Bonett, Douglas G. – Psychological Methods, 2009
L. Wilkinson and the Task Force on Statistical Inference (1999) recommended reporting confidence intervals for measures of effect sizes. If the sample size is too small, the confidence interval may be too wide to provide meaningful information. Recently, K. Kelley and J. R. Rausch (2006) used an iterative approach to computer-generate tables of…
Descriptors: Intervals, Sample Size, Effect Size, Statistical Inference
Capraro, Robert M.; Capraro, Mary Margaret – Middle Grades Research Journal, 2009
This study examines two journals specific to the middles grades where original quantitative empirical articles are published, Research in Middle Level Education and Middle Grades Research Journal to determine what quantitative statistics are used, how they are used, and what study designs are used. Important for those who write for the…
Descriptors: Periodicals, Research Methodology, Social Science Research, Effect Size

Murray, Leigh W.; Dosser, David A., Jr. – Journal of Counseling Psychology, 1987
The use of measures of magnitude of effect has been advocated as a way to go beyond statistical tests of significance and to identify effects of a practical size. They have been used in meta-analysis to combine results of different studies. Describes problems associated with measures of magnitude of effect (particularly study size) and…
Descriptors: Effect Size, Meta Analysis, Research Design, Research Methodology
Thompson, Bruce – 1987
This paper evaluates the logic underlying various criticisms of statistical significance testing and makes specific recommendations for scientific and editorial practice that might better increase the knowledge base. Reliance on the traditional hypothesis testing model has led to a major bias against nonsignificant results and to misinterpretation…
Descriptors: Analysis of Variance, Data Interpretation, Editors, Effect Size