Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 12 |
Descriptor
Hierarchical Linear Modeling | 12 |
Monte Carlo Methods | 12 |
Sample Size | 12 |
Error of Measurement | 8 |
Statistical Analysis | 6 |
Statistical Bias | 6 |
Computation | 5 |
Computer Software | 3 |
Educational Research | 3 |
Effect Size | 3 |
Models | 3 |
More ▼ |
Source
Journal of Experimental… | 5 |
Journal of Educational and… | 3 |
ProQuest LLC | 2 |
AERA Online Paper Repository | 1 |
Educational and Psychological… | 1 |
Author
Bellara, Aarti | 1 |
Bellara, Aarti P. | 1 |
Ben Kelcey | 1 |
Bolin, Jocelyn H. | 1 |
Cox, Kyle | 1 |
Dong, Nianbo | 1 |
Fan Pan | 1 |
Ferron, John M. | 1 |
Finch, W. Holmes | 1 |
Gambino, Anthony J. | 1 |
Hannah Luce | 1 |
More ▼ |
Publication Type
Journal Articles | 9 |
Reports - Research | 7 |
Dissertations/Theses -… | 2 |
Information Analyses | 1 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Kyle Cox; Ben Kelcey; Hannah Luce – Journal of Experimental Education, 2024
Comprehensive evaluation of treatment effects is aided by considerations for moderated effects. In educational research, the combination of natural hierarchical structures and prevalence of group-administered or shared facilitator treatments often produces three-level partially nested data structures. Literature details planning strategies for a…
Descriptors: Randomized Controlled Trials, Monte Carlo Methods, Hierarchical Linear Modeling, Educational Research
Fan Pan – ProQuest LLC, 2021
This dissertation informed researchers about the performance of different level-specific and target-specific model fit indices in Multilevel Latent Growth Model (MLGM) using unbalanced design and different trajectories. As the use of MLGMs is a relatively new field, this study helped further the field by informing researchers interested in using…
Descriptors: Goodness of Fit, Item Response Theory, Growth Models, Monte Carlo Methods
Bolin, Jocelyn H.; Finch, W. Holmes; Stenger, Rachel – Educational and Psychological Measurement, 2019
Multilevel data are a reality for many disciplines. Currently, although multiple options exist for the treatment of multilevel data, most disciplines strictly adhere to one method for multilevel data regardless of the specific research design circumstances. The purpose of this Monte Carlo simulation study is to compare several methods for the…
Descriptors: Hierarchical Linear Modeling, Computation, Statistical Analysis, Maximum Likelihood Statistics
Joo, Seang-hwane; Wang, Yan; Ferron, John M. – AERA Online Paper Repository, 2017
Multiple-baseline studies provide meta-analysts the opportunity to compute effect sizes based on either within-series comparisons of treatment phase to baseline phase observations, or time specific between-series comparisons of observations from those that have started treatment to observations of those that are still in baseline. The advantage of…
Descriptors: Meta Analysis, Effect Size, Hierarchical Linear Modeling, Computation
McCoach, D. Betsy; Rifenbark, Graham G.; Newton, Sarah D.; Li, Xiaoran; Kooken, Janice; Yomtov, Dani; Gambino, Anthony J.; Bellara, Aarti – Journal of Educational and Behavioral Statistics, 2018
This study compared five common multilevel software packages via Monte Carlo simulation: HLM 7, M"plus" 7.4, R (lme4 V1.1-12), Stata 14.1, and SAS 9.4 to determine how the programs differ in estimation accuracy and speed, as well as convergence, when modeling multiple randomly varying slopes of different magnitudes. Simulated data…
Descriptors: Hierarchical Linear Modeling, Computer Software, Comparative Analysis, Monte Carlo Methods
Kelcey, Benjamin; Dong, Nianbo; Spybrook, Jessaca; Cox, Kyle – Journal of Educational and Behavioral Statistics, 2017
Designs that facilitate inferences concerning both the total and indirect effects of a treatment potentially offer a more holistic description of interventions because they can complement "what works" questions with the comprehensive study of the causal connections implied by substantive theories. Mapping the sensitivity of designs to…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Mediation Theory, Models
Huang, Francis L. – Journal of Experimental Education, 2016
Multilevel modeling has grown in use over the years as a way to deal with the nonindependent nature of observations found in clustered data. However, other alternatives to multilevel modeling are available that can account for observations nested within clusters, including the use of Taylor series linearization for variance estimation, the design…
Descriptors: Multivariate Analysis, Hierarchical Linear Modeling, Sample Size, Error of Measurement
McNeish, Daniel M. – Journal of Educational and Behavioral Statistics, 2016
Mixed-effects models (MEMs) and latent growth models (LGMs) are often considered interchangeable save the discipline-specific nomenclature. Software implementations of these models, however, are not interchangeable, particularly with small sample sizes. Restricted maximum likelihood estimation that mitigates small sample bias in MEMs has not been…
Descriptors: Models, Statistical Analysis, Hierarchical Linear Modeling, Sample Size
Wu, Jiun-Yu; Kwok, Oi-Man; Willson, Victor L. – Journal of Experimental Education, 2014
The authors compared the effects of using the true Multilevel Latent Growth Curve Model (MLGCM) with single-level regular and design-based Latent Growth Curve Models (LGCM) with or without the higher-level predictor on various criterion variables for multilevel longitudinal data. They found that random effect estimates were biased when the…
Descriptors: Longitudinal Studies, Hierarchical Linear Modeling, Prediction, Regression (Statistics)
Schoeneberger, Jason A. – Journal of Experimental Education, 2016
The design of research studies utilizing binary multilevel models must necessarily incorporate knowledge of multiple factors, including estimation method, variance component size, or number of predictors, in addition to sample sizes. This Monte Carlo study examined the performance of random effect binary outcome multilevel models under varying…
Descriptors: Sample Size, Models, Computation, Predictor Variables
Bellara, Aarti P. – ProQuest LLC, 2013
Propensity score analysis has been used to minimize the selection bias in observational studies to identify causal relationships. A propensity score is an estimate of an individual's probability of being placed in a treatment group given a set of covariates. Propensity score analysis aims to use the estimate to create balanced groups, akin to a…
Descriptors: Scores, Probability, Monte Carlo Methods, Statistical Analysis
Lai, Mark H. C.; Kwok, Oi-man – Journal of Experimental Education, 2015
Educational researchers commonly use the rule of thumb of "design effect smaller than 2" as the justification of not accounting for the multilevel or clustered structure in their data. The rule, however, has not yet been systematically studied in previous research. In the present study, we generated data from three different models…
Descriptors: Educational Research, Research Design, Cluster Grouping, Statistical Data