Publication Date
In 2025 | 1 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 10 |
Since 2016 (last 10 years) | 14 |
Since 2006 (last 20 years) | 23 |
Descriptor
Monte Carlo Methods | 27 |
Sample Size | 27 |
Test Length | 27 |
Item Response Theory | 21 |
Test Items | 17 |
Error of Measurement | 10 |
Comparative Analysis | 8 |
Accuracy | 7 |
Goodness of Fit | 7 |
Computation | 6 |
Markov Processes | 6 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 23 |
Reports - Research | 20 |
Reports - Evaluative | 5 |
Dissertations/Theses -… | 2 |
Speeches/Meeting Papers | 2 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Novak, Josip; Rebernjak, Blaž – Measurement: Interdisciplinary Research and Perspectives, 2023
A Monte Carlo simulation study was conducted to examine the performance of [alpha], [lambda]2, [lambda][subscript 4], [lambda][subscript 2], [omega][subscript T], GLB[subscript MRFA], and GLB[subscript Algebraic] coefficients. Population reliability, distribution shape, sample size, test length, and number of response categories were varied…
Descriptors: Monte Carlo Methods, Evaluation Methods, Reliability, Simulation
Shaojie Wang; Won-Chan Lee; Minqiang Zhang; Lixin Yuan – Applied Measurement in Education, 2024
To reduce the impact of parameter estimation errors on IRT linking results, recent work introduced two information-weighted characteristic curve methods for dichotomous items. These two methods showed outstanding performance in both simulation and pseudo-form pseudo-group analysis. The current study expands upon the concept of information…
Descriptors: Item Response Theory, Test Format, Test Length, Error of Measurement
Fatih Orçan – International Journal of Assessment Tools in Education, 2025
Factor analysis is a statistical method to explore the relationships among observed variables and identify latent structures. It is crucial in scale development and validity analysis. Key factors affecting the accuracy of factor analysis results include the type of data, sample size, and the number of response categories. While some studies…
Descriptors: Factor Analysis, Factor Structure, Item Response Theory, Sample Size
Basman, Munevver – International Journal of Assessment Tools in Education, 2023
To ensure the validity of the tests is to check that all items have similar results across different groups of individuals. However, differential item functioning (DIF) occurs when the results of individuals with equal ability levels from different groups differ from each other on the same test item. Based on Item Response Theory and Classic Test…
Descriptors: Test Bias, Test Items, Test Validity, Item Response Theory
Kalkan, Ömür Kaya – Measurement: Interdisciplinary Research and Perspectives, 2022
The four-parameter logistic (4PL) Item Response Theory (IRT) model has recently been reconsidered in the literature due to the advances in the statistical modeling software and the recent developments in the estimation of the 4PL IRT model parameters. The current simulation study evaluated the performance of expectation-maximization (EM),…
Descriptors: Comparative Analysis, Sample Size, Test Length, Algorithms
Yu, Albert; Douglas, Jeffrey A. – Journal of Educational and Behavioral Statistics, 2023
We propose a new item response theory growth model with item-specific learning parameters, or ISLP, and two variations of this model. In the ISLP model, either items or blocks of items have their own learning parameters. This model may be used to improve the efficiency of learning in a formative assessment. We show ways that the ISLP model's…
Descriptors: Item Response Theory, Learning, Markov Processes, Monte Carlo Methods
Sedat Sen; Allan S. Cohen – Educational and Psychological Measurement, 2024
A Monte Carlo simulation study was conducted to compare fit indices used for detecting the correct latent class in three dichotomous mixture item response theory (IRT) models. Ten indices were considered: Akaike's information criterion (AIC), the corrected AIC (AICc), Bayesian information criterion (BIC), consistent AIC (CAIC), Draper's…
Descriptors: Goodness of Fit, Item Response Theory, Sample Size, Classification
Baris Pekmezci, Fulya; Sengul Avsar, Asiye – International Journal of Assessment Tools in Education, 2021
There is a great deal of research about item response theory (IRT) conducted by simulations. Item and ability parameters are estimated with varying numbers of replications under different test conditions. However, it is not clear what the appropriate number of replications should be. The aim of the current study is to develop guidelines for the…
Descriptors: Item Response Theory, Computation, Accuracy, Monte Carlo Methods
Wang, Shaojie; Zhang, Minqiang; Lee, Won-Chan; Huang, Feifei; Li, Zonglong; Li, Yixing; Yu, Sufang – Journal of Educational Measurement, 2022
Traditional IRT characteristic curve linking methods ignore parameter estimation errors, which may undermine the accuracy of estimated linking constants. Two new linking methods are proposed that take into account parameter estimation errors. The item- (IWCC) and test-information-weighted characteristic curve (TWCC) methods employ weighting…
Descriptors: Item Response Theory, Error of Measurement, Accuracy, Monte Carlo Methods
Uysal, Ibrahim; Sahin-Kürsad, Merve; Kiliç, Abdullah Faruk – Participatory Educational Research, 2022
The aim of the study was to examine the common items in the mixed format (e.g., multiple-choices and essay items) contain parameter drifts in the test equating processes performed with the common item nonequivalent groups design. In this study, which was carried out using Monte Carlo simulation with a fully crossed design, the factors of test…
Descriptors: Test Items, Test Format, Item Response Theory, Equated Scores
Ames, Allison J.; Leventhal, Brian C.; Ezike, Nnamdi C. – Measurement: Interdisciplinary Research and Perspectives, 2020
Data simulation and Monte Carlo simulation studies are important skills for researchers and practitioners of educational and psychological measurement, but there are few resources on the topic specific to item response theory. Even fewer resources exist on the statistical software techniques to implement simulation studies. This article presents…
Descriptors: Monte Carlo Methods, Item Response Theory, Simulation, Computer Software
Yavuz, Guler; Hambleton, Ronald K. – Educational and Psychological Measurement, 2017
Application of MIRT modeling procedures is dependent on the quality of parameter estimates provided by the estimation software and techniques used. This study investigated model parameter recovery of two popular MIRT packages, BMIRT and flexMIRT, under some common measurement conditions. These packages were specifically selected to investigate the…
Descriptors: Item Response Theory, Models, Comparative Analysis, Computer Software
Cao, Mengyang; Tay, Louis; Liu, Yaowu – Educational and Psychological Measurement, 2017
This study examined the performance of a proposed iterative Wald approach for detecting differential item functioning (DIF) between two groups when preknowledge of anchor items is absent. The iterative approach utilizes the Wald-2 approach to identify anchor items and then iteratively tests for DIF items with the Wald-1 approach. Monte Carlo…
Descriptors: Monte Carlo Methods, Test Items, Test Bias, Error of Measurement
Sengul Avsar, Asiye; Tavsancil, Ezel – Educational Sciences: Theory and Practice, 2017
This study analysed polytomous items' psychometric properties according to nonparametric item response theory (NIRT) models. Thus, simulated datasets--three different test lengths (10, 20 and 30 items), three sample distributions (normal, right and left skewed) and three samples sizes (100, 250 and 500)--were generated by conducting 20…
Descriptors: Test Items, Psychometrics, Nonparametric Statistics, Item Response Theory
Lamsal, Sunil – ProQuest LLC, 2015
Different estimation procedures have been developed for the unidimensional three-parameter item response theory (IRT) model. These techniques include the marginal maximum likelihood estimation, the fully Bayesian estimation using Markov chain Monte Carlo simulation techniques, and the Metropolis-Hastings Robbin-Monro estimation. With each…
Descriptors: Item Response Theory, Monte Carlo Methods, Maximum Likelihood Statistics, Markov Processes
Previous Page | Next Page »
Pages: 1 | 2