Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 8 |
Descriptor
Monte Carlo Methods | 15 |
Predictor Variables | 15 |
Sample Size | 15 |
Correlation | 9 |
Effect Size | 4 |
Models | 4 |
Regression (Statistics) | 4 |
Statistical Analysis | 4 |
Equations (Mathematics) | 3 |
Error of Measurement | 3 |
Mathematical Models | 3 |
More ▼ |
Source
Educational and Psychological… | 5 |
Journal of Experimental… | 5 |
Structural Equation Modeling:… | 2 |
Psychometrika | 1 |
Author
Hittner, James B. | 2 |
May, Kim | 2 |
Ames, Allison J. | 1 |
Broodbooks, Wendy J. | 1 |
Chan, Wai | 1 |
Cheung, Mike W. L. | 1 |
Donoghue, John R. | 1 |
Elmore, Patricia B. | 1 |
Ferreres, Doris | 1 |
Fidalgo, Angel M. | 1 |
Finch, W. Holmes | 1 |
More ▼ |
Publication Type
Journal Articles | 13 |
Reports - Evaluative | 8 |
Reports - Research | 6 |
Speeches/Meeting Papers | 2 |
Reports - Descriptive | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Study… | 1 |
What Works Clearinghouse Rating
Tong-Rong Yang; Li-Jen Weng – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In Savalei's (2011) simulation that evaluated the performance of polychoric correlation estimates in small samples, two methods for treating zero-frequency cells, adding 0.5 (ADD) and doing nothing (NONE), were compared. Savalei tentatively suggested using ADD for binary data and NONE for data with three or more categories. Yet, Savalei's…
Descriptors: Correlation, Statistical Distributions, Monte Carlo Methods, Sample Size
Ames, Allison J.; Myers, Aaron J. – Educational and Psychological Measurement, 2021
Contamination of responses due to extreme and midpoint response style can confound the interpretation of scores, threatening the validity of inferences made from survey responses. This study incorporated person-level covariates in the multidimensional item response tree model to explain heterogeneity in response style. We include an empirical…
Descriptors: Response Style (Tests), Item Response Theory, Longitudinal Studies, Adolescents
Schoeneberger, Jason A. – Journal of Experimental Education, 2016
The design of research studies utilizing binary multilevel models must necessarily incorporate knowledge of multiple factors, including estimation method, variance component size, or number of predictors, in addition to sample sizes. This Monte Carlo study examined the performance of random effect binary outcome multilevel models under varying…
Descriptors: Sample Size, Models, Computation, Predictor Variables
Lai, Mark H. C.; Kwok, Oi-man – Journal of Experimental Education, 2015
Educational researchers commonly use the rule of thumb of "design effect smaller than 2" as the justification of not accounting for the multilevel or clustered structure in their data. The rule, however, has not yet been systematically studied in previous research. In the present study, we generated data from three different models…
Descriptors: Educational Research, Research Design, Cluster Grouping, Statistical Data
Yuan, Ke-Hai; Chan, Wai – Psychometrika, 2011
The paper obtains consistent standard errors (SE) and biases of order O(1/n) for the sample standardized regression coefficients with both random and given predictors. Analytical results indicate that the formulas for SEs given in popular text books are consistent only when the population value of the regression coefficient is zero. The sample…
Descriptors: Statistical Bias, Error of Measurement, Regression (Statistics), Predictor Variables
Knofczynski, Gregory T.; Mundfrom, Daniel – Educational and Psychological Measurement, 2008
When using multiple regression for prediction purposes, the issue of minimum required sample size often needs to be addressed. Using a Monte Carlo simulation, models with varying numbers of independent variables were examined and minimum sample sizes were determined for multiple scenarios at each number of independent variables. The scenarios…
Descriptors: Sample Size, Monte Carlo Methods, Predictor Variables, Prediction
Cheung, Mike W. L. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
Mediators are variables that explain the association between an independent variable and a dependent variable. Structural equation modeling (SEM) is widely used to test models with mediating effects. This article illustrates how to construct confidence intervals (CIs) of the mediating effects for a variety of models in SEM. Specifically, mediating…
Descriptors: Structural Equation Models, Probability, Intervals, Sample Size
Donoghue, John R.; Jenkins, Frank – 1992
Monte Carlo methods were used to investigate the effect of misspecification of the second level in a two-level hierarchical linear model (HLM). Sample composition, heterogeneity of the group size, level of intraclass correlation, and correlation between second-level predictors were manipulated. Each of 20 generated data sets was analyzed nine…
Descriptors: Correlation, Estimation (Mathematics), Models, Monte Carlo Methods

May, Kim; Hittner, James B. – Journal of Experimental Education, 1997
A Monte Carlo evaluation of four test statistics for comparing dependent zero-order correlations was conducted with four sample sizes and three population distributions. Results indicate that choice of optimal test statistic depends on sample size and distribution, and predictor intercorrelation and effect size or magnitude of the…
Descriptors: Correlation, Effect Size, Monte Carlo Methods, Predictor Variables
Jiang, Ying Hong; Smith, Philip L. – 2002
This Monte Carlo study explored relationships among standard and unstandardized regression coefficients, structural coefficients, multiple R_ squared, and significance level of predictors for a variety of linear regression scenarios. Ten regression models with three predictors were included, and four conditions were varied that were expected to…
Descriptors: Effect Size, Estimation (Mathematics), Mathematical Models, Monte Carlo Methods
Fidalgo, Angel M.; Ferreres, Doris; Muniz, Jose – Journal of Experimental Education, 2004
The aim of this work was to determine, in terms of Type I and Type II error rates, the risks of applying various statistical procedures for evaluating differential item functioning. To this end, the authors carried out a simulation study in which the Mantel-Haenszel and SIBTEST procedures were applied in conjunction. The variables manipulated were…
Descriptors: Test Bias, Sample Size, Statistical Analysis, Predictor Variables
Finch, W. Holmes; Schneider, Mercedes K. – Educational and Psychological Measurement, 2006
This study compares the classification accuracy of linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), logistic regression (LR), and classification and regression trees (CART) under a variety of data conditions. Past research has generally found comparable performance of LDA and LR, with relatively less research on QDA and…
Descriptors: Classification, Sample Size, Effect Size, Discriminant Analysis

Tracz, Susan M.; And Others – Educational and Psychological Measurement, 1992
Effects of violating the independence assumption when combining correlation coefficients in a meta-analysis were studied. This Monte-Carlo simulation varied sample size, predictor number, population intercorrelation among predictors, and population correlation between predictors and criterion. Combining statistics from nonindependent data in a…
Descriptors: Computer Simulation, Correlation, Equations (Mathematics), Mathematical Models
Silver, N. Clayton; Hittner, James B.; May, Kim – Journal of Experimental Education, 2004
The authors conducted a Monte Carlo simulation of 4 test statistics or comparing dependent correlations with no variables in common. Empirical Type 1 error rates and power estimates were determined for K. Pearson and L. N. G. Filon's (1898) z, O. J. Dunn and V. A. Clark's (1969) z, J. H. Steiger's (1980) original modification of Dunn and Clark's…
Descriptors: Monte Carlo Methods, Simulation, Effect Size, Sample Size

Broodbooks, Wendy J.; Elmore, Patricia B. – Educational and Psychological Measurement, 1987
The effects of sample size, number of variables, and population value of the congruence coefficient on the sampling distribution of the congruence coefficient were examined. Sample data were generated on the basis of the common factor model, and principal axes factor analyses were performed. (Author/LMO)
Descriptors: Factor Analysis, Mathematical Models, Monte Carlo Methods, Predictor Variables