Publication Date
In 2025 | 1 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 11 |
Since 2006 (last 20 years) | 16 |
Descriptor
Error of Measurement | 22 |
Research Problems | 22 |
Sample Size | 22 |
Research Design | 9 |
Educational Research | 8 |
Sampling | 8 |
Data Analysis | 7 |
Evaluation Methods | 6 |
Statistical Analysis | 6 |
Statistical Bias | 6 |
Statistical Inference | 6 |
More ▼ |
Source
Author
A. Corinne Huggins-Manley | 1 |
Algina, James | 1 |
Amota Ataneka | 1 |
Arikan, Çigdem Akin | 1 |
Ben Kelcey | 1 |
Cheema, Jehanzeb | 1 |
Cook, Linda L. | 1 |
Crowe, Kelly S. | 1 |
Custer, Michael | 1 |
Deke, John | 1 |
DiStefano, Christine | 1 |
More ▼ |
Publication Type
Reports - Research | 18 |
Journal Articles | 13 |
Speeches/Meeting Papers | 5 |
Dissertations/Theses -… | 1 |
Guides - Non-Classroom | 1 |
Information Analyses | 1 |
Numerical/Quantitative Data | 1 |
Opinion Papers | 1 |
Reports - Descriptive | 1 |
Education Level
Higher Education | 1 |
Audience
Researchers | 4 |
Location
United States | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Ting Dai; Yang Du; Jennifer Cromley; Tia Fechter; Frank Nelson – Journal of Experimental Education, 2024
Simple matrix sampling planned missing (SMS PD) design, introduce missing data patterns that lead to covariances between variables that are not jointly observed, and create difficulties for analyses other than mean and variance estimations. Based on prior research, we adopted a new multigroup confirmatory factor analysis (CFA) approach to handle…
Descriptors: Research Problems, Research Design, Data, Matrices
Duane Knudson – Measurement in Physical Education and Exercise Science, 2025
Small sample sizes contribute to several problems in research and knowledge advancement. This conceptual replication study confirmed and extended the inflation of type II errors and confidence intervals in correlation analyses of small sample sizes common in kinesiology/exercise science. Current population data (N = 18, 230, & 464) on four…
Descriptors: Kinesiology, Exercise, Biomechanics, Movement Education
Yan Xia; Selim Havan – Educational and Psychological Measurement, 2024
Although parallel analysis has been found to be an accurate method for determining the number of factors in many conditions with complete data, its application under missing data is limited. The existing literature recommends that, after using an appropriate multiple imputation method, researchers either apply parallel analysis to every imputed…
Descriptors: Data Interpretation, Factor Analysis, Statistical Inference, Research Problems
Shi, Dexin; DiStefano, Christine; Zheng, Xiaying; Liu, Ren; Jiang, Zhehan – International Journal of Behavioral Development, 2021
This study investigates the performance of robust maximum likelihood (ML) estimators when fitting and evaluating small sample latent growth models with non-normal missing data. Results showed that the robust ML methods could be used to account for non-normality even when the sample size is very small (e.g., N < 100). Among the robust ML…
Descriptors: Growth Models, Maximum Likelihood Statistics, Factor Analysis, Sample Size
Ben Kelcey; Fangxing Bai; Amota Ataneka; Yanli Xie; Kyle Cox – Society for Research on Educational Effectiveness, 2024
We develop a structural after measurement (SAM) method for structural equation models (SEMs) that accommodates missing data. The results show that the proposed SAM missing data estimator outperforms conventional full information (FI) estimators in terms of convergence, bias, and root-mean-square-error in small-to-moderate samples or large samples…
Descriptors: Structural Equation Models, Research Problems, Error of Measurement, Maximum Likelihood Statistics
Ziying Li; A. Corinne Huggins-Manley; Walter L. Leite; M. David Miller; Eric A. Wright – Educational and Psychological Measurement, 2022
The unstructured multiple-attempt (MA) item response data in virtual learning environments (VLEs) are often from student-selected assessment data sets, which include missing data, single-attempt responses, multiple-attempt responses, and unknown growth ability across attempts, leading to a complex and complicated scenario for using this kind of…
Descriptors: Sequential Approach, Item Response Theory, Data, Simulation
Smith, Kendal N.; Lamb, Kristen N.; Henson, Robin K. – Gifted Child Quarterly, 2020
Multivariate analysis of variance (MANOVA) is a statistical method used to examine group differences on multiple outcomes. This article reports results of a review of MANOVA in gifted education journals between 2011 and 2017 (N = 56). Findings suggest a number of conceptual and procedural misunderstandings about the nature of MANOVA and its…
Descriptors: Multivariate Analysis, Academically Gifted, Gifted Education, Educational Research
Soysal, Sumeyra; Karaman, Haydar; Dogan, Nuri – Eurasian Journal of Educational Research, 2018
Purpose of the Study: Missing data are a common problem encountered while implementing measurement instruments. Yet the extent to which reliability, validity, average discrimination and difficulty of the test results are affected by the missing data has not been studied much. Since it is inevitable that missing data have an impact on the…
Descriptors: Sample Size, Data Analysis, Research Problems, Error of Measurement
Soysal, Sümeyra; Arikan, Çigdem Akin; Inal, Hatice – Online Submission, 2016
This study aims to investigate the effect of methods to deal with missing data on item difficulty estimations under different test length conditions and sampling sizes. In this line, a data set including 10, 20 and 40 items with 100 and 5000 sampling size was prepared. Deletion process was applied at the rates of 5%, 10% and 20% under conditions…
Descriptors: Research Problems, Data Analysis, Item Response Theory, Test Items
Custer, Michael – Online Submission, 2015
This study examines the relationship between sample size and item parameter estimation precision when utilizing the one-parameter model. Item parameter estimates are examined relative to "true" values by evaluating the decline in root mean squared deviation (RMSD) and the number of outliers as sample size increases. This occurs across…
Descriptors: Sample Size, Item Response Theory, Computation, Accuracy
McNeish, Daniel – Review of Educational Research, 2017
In education research, small samples are common because of financial limitations, logistical challenges, or exploratory studies. With small samples, statistical principles on which researchers rely do not hold, leading to trust issues with model estimates and possible replication issues when scaling up. Researchers are generally aware of such…
Descriptors: Models, Statistical Analysis, Sampling, Sample Size
Deke, John; Wei, Thomas; Kautz, Tim – National Center for Education Evaluation and Regional Assistance, 2017
Evaluators of education interventions are increasingly designing studies to detect impacts much smaller than the 0.20 standard deviations that Cohen (1988) characterized as "small." While the need to detect smaller impacts is based on compelling arguments that such impacts are substantively meaningful, the drive to detect smaller impacts…
Descriptors: Intervention, Educational Research, Research Problems, Statistical Bias
Jia, Fan; Moore, E. Whitney G.; Kinai, Richard; Crowe, Kelly S.; Schoemann, Alexander M.; Little, Todd D. – International Journal of Behavioral Development, 2014
Utilizing planned missing data (PMD) designs (ex. 3-form surveys) enables researchers to ask participants fewer questions during the data collection process. An important question, however, is just how few participants are needed to effectively employ planned missing data designs in research studies. This article explores this question by using…
Descriptors: Data Analysis, Statistical Inference, Error of Measurement, Computation
Lai, Mark H. C.; Kwok, Oi-man – Journal of Experimental Education, 2015
Educational researchers commonly use the rule of thumb of "design effect smaller than 2" as the justification of not accounting for the multilevel or clustered structure in their data. The rule, however, has not yet been systematically studied in previous research. In the present study, we generated data from three different models…
Descriptors: Educational Research, Research Design, Cluster Grouping, Statistical Data
Cheema, Jehanzeb – ProQuest LLC, 2012
This study looked at the effect of a number of factors such as the choice of analytical method, the handling method for missing data, sample size, and proportion of missing data, in order to evaluate the effect of missing data treatment on accuracy of estimation. In order to accomplish this a methodological approach involving simulated data was…
Descriptors: Educational Research, Educational Researchers, Statistical Analysis, Sample Size
Previous Page | Next Page »
Pages: 1 | 2