Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 4 |
| Since 2007 (last 20 years) | 6 |
Descriptor
| Sample Size | 12 |
| Structural Equation Models | 12 |
| Sampling | 11 |
| Error of Measurement | 5 |
| Simulation | 5 |
| Monte Carlo Methods | 4 |
| Estimation (Mathematics) | 3 |
| Evaluation Methods | 3 |
| Goodness of Fit | 3 |
| Statistical Bias | 3 |
| Computation | 2 |
| More ▼ | |
Source
Author
| Amelang, Manfred | 1 |
| Bentler, Peter M. | 1 |
| Braeken, Johan | 1 |
| Cohen, Allan S. | 1 |
| Cumsille, Patricio E. | 1 |
| Enders, Craig K. | 1 |
| Graham, John W. | 1 |
| Hancock, Gregory R. | 1 |
| In'nami, Yo | 1 |
| Kim, Seohyun | 1 |
| Koizumi, Rie | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 11 |
| Reports - Research | 6 |
| Reports - Evaluative | 4 |
| Reports - Descriptive | 2 |
| Speeches/Meeting Papers | 2 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
van Laar, Saskia; Braeken, Johan – Practical Assessment, Research & Evaluation, 2021
Despite the sensitivity of fit indices to various model and data characteristics in structural equation modeling, these fit indices are used in a rigid binary fashion as a mere rule of thumb threshold value in a search for model adequacy. Here, we address the behavior and interpretation of the popular Comparative Fit Index (CFI) by stressing that…
Descriptors: Goodness of Fit, Structural Equation Models, Sampling, Sample Size
Pavlov, Goran; Maydeu-Olivares, Alberto; Shi, Dexin – Educational and Psychological Measurement, 2021
We examine the accuracy of p values obtained using the asymptotic mean and variance (MV) correction to the distribution of the sample standardized root mean squared residual (SRMR) proposed by Maydeu-Olivares to assess the exact fit of SEM models. In a simulation study, we found that under normality, the MV-corrected SRMR statistic provides…
Descriptors: Structural Equation Models, Goodness of Fit, Simulation, Error of Measurement
McNeish, Daniel – Journal of Experimental Education, 2018
Small samples are common in growth models due to financial and logistical difficulties of following people longitudinally. For similar reasons, longitudinal studies often contain missing data. Though full information maximum likelihood (FIML) is popular to accommodate missing data, the limited number of studies in this area have found that FIML…
Descriptors: Growth Models, Sampling, Sample Size, Hierarchical Linear Modeling
Kim, Seohyun; Lu, Zhenqiu; Cohen, Allan S. – Measurement: Interdisciplinary Research and Perspectives, 2018
Bayesian algorithms have been used successfully in the social and behavioral sciences to analyze dichotomous data particularly with complex structural equation models. In this study, we investigate the use of the Polya-Gamma data augmentation method with Gibbs sampling to improve estimation of structural equation models with dichotomous variables.…
Descriptors: Bayesian Statistics, Structural Equation Models, Computation, Social Science Research
In'nami, Yo; Koizumi, Rie – International Journal of Testing, 2013
The importance of sample size, although widely discussed in the literature on structural equation modeling (SEM), has not been widely recognized among applied SEM researchers. To narrow this gap, we focus on second language testing and learning studies and examine the following: (a) Is the sample size sufficient in terms of precision and power of…
Descriptors: Structural Equation Models, Sample Size, Second Language Instruction, Monte Carlo Methods
Peugh, James L.; Enders, Craig K. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Cluster sampling results in response variable variation both among respondents (i.e., within-cluster or Level 1) and among clusters (i.e., between-cluster or Level 2). Properly modeling within- and between-cluster variation could be of substantive interest in numerous settings, but applied researchers typically test only within-cluster (i.e.,…
Descriptors: Structural Equation Models, Monte Carlo Methods, Multivariate Analysis, Sampling
Peer reviewedLa Du, Terence J.; Tanaka, J. S. – Multivariate Behavioral Research, 1995
After reviewing the multiple fit indices in structural equation models, evidence on their behavior is presented through simulation studies in which sample size, estimation method, and model misspecification varied. Two sampling studies, with and without known populations, are presented, and implications for the use of fit indices are discussed.…
Descriptors: Estimation (Mathematics), Goodness of Fit, Sample Size, Sampling
Peer reviewedBentler, Peter M.; Yuan, Ke-Hai – Multivariate Behavioral Research, 1999
Studied the small sample behavior of several test statistics based on the maximum-likelihood estimator but designed to perform better with nonnormal data. Monte Carlo results indicate the satisfactory performance of the "F" statistic recently proposed by K. Yuan and P. Bentler (1997). (SLD)
Descriptors: Estimation (Mathematics), Maximum Likelihood Statistics, Monte Carlo Methods, Sample Size
Zhang, Duan; Willson, Victor L. – Structural Equation Modeling: A Multidisciplinary Journal, 2006
Both structural equation models and hierarchical linear models (HLMs) have been commonly used in multilevel analysis. This study utilized simulated data to investigate the power difference among 3 multilevel models: HLM, deviation structural equation models, and a hybrid approach of HLM and structural equation models. Two factors were examined:…
Descriptors: Comparative Analysis, Structural Equation Models, Interaction, Simulation
Nevitt, Johnathan; Hancock, Gregory R. – 1998
Though common structural equation modeling (SEM) methods are predicated upon the assumption of multivariate normality, applied researchers often find themselves with data clearly violating this assumption and without sufficient sample size to use distribution-free estimation methods. Fortunately, promising alternatives are being integrated into…
Descriptors: Chi Square, Computer Software, Error of Measurement, Estimation (Mathematics)
Graham, John W.; Taylor, Bonnie J.; Olchowski, Allison E.; Cumsille, Patricio E. – Psychological Methods, 2006
The authors describe 2 efficiency (planned missing data) designs for measurement: the 3-form design and the 2-method measurement design. The 3-form design, a kind of matrix sampling, allows researchers to leverage limited resources to collect data for 33% more survey questions than can be answered by any 1 respondent. Power tables for estimating…
Descriptors: Cost Effectiveness, Structural Equation Models, Psychological Studies, Data Collection
Amelang, Manfred; Steinmayr, Ricarda – Intelligence, 2006
Emotional intelligence (EI) has often been criticized to measure nothing more than intelligence and personality. Recent studies have shown that EI has an incremental validity concerning life outcome criteria, but inconsistent results have been found for achievement criteria. Two studies were conducted to examine if EI could predict achievement…
Descriptors: Psychometrics, Evaluation Criteria, Social Status, Emotional Intelligence

Direct link
